
AGRICULTURAL
ECONOMICS

Agricultural Economics 41 (2010) 67–79

The impact of integrated aquaculture–agriculture on small-scale farms
in Southern Malawi

Madan M. Deya,∗, Ferdinand J. Paraguasb, Patrick Kambewac, Diemuth E. Pemsld

aAquaculture Economics and Marketing, University of Arkansas at Pine Bluff, 1200 N University Drive, Pine Bluff, AR 71601, USA
bFaculty of Economics and Business Administration, VU University Amsterdam, De Boelelaan 1105, 1081 HV Amsterdam, The Netherlands

cDepartment of Economics, Chancellor College, P.O. Box 280, Zomba, Malawi
dPolicy, Economics and Social Sciences, The WorldFish Center, PO Box 500 GPO, 10670 Penang, Malaysia

Received 18 December 2007; received in revised form 18 July 2009; accepted 28 September 2009

Abstract

Sustainable agricultural intensification is an urgent challenge for Sub-Saharan Africa. One potential solution is to rely on local farmers’ knowledge
for improved management of diverse on-farm resources and integration among various farm enterprises. In this article, we analyze the farm-level
impact of one recent example, namely the integrated aquaculture–agriculture (IAA) technologies that have been developed and disseminated in
a participatory manner in Malawi. Based on a 2004 survey of 315 respondents (166 adopters and 149 nonadopters), we test the hypothesis that
adoption of IAA is associated with improved farm productivity and more efficient use of resources. Estimating a technical inefficiency function
shows that IAA farms were significantly more efficient compared to nonadopters. IAA farms also had higher total factor productivity, higher farm
income per hectare, and higher returns to family labor.

JEL classification: O13, O32, O33, Q16, Q22
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1. Introduction

The agricultural sector in Sub-Saharan Africa (SSA) provides
income and livelihood to the majority of people in the region
but is characterized by low and in many locations decreasing
productivity. Raising agricultural productivity is crucial to in-
crease food production and to generate employment (Meier and
Rauch, 2000).

Major limitations to agricultural productivity in SSA are de-
grading natural resources, limited and uncertain rainfall, and
poor infrastructure and service support. Though a “sustainable
agricultural intensification (SAI)” is most needed for SSA, a
modernization of agriculture based on external inputs such as
agrochemicals and improved high-yielding varieties (analog to

∗Corresponding author. Tel.: +1-870-575-8108; fax: 1-870-575-4637.
E-mail address: mdey@uaex.edu (M. M. Dey).

Data Appendix Available Online

A data appendix to replicate main results is available in the online version of
this article. Please note: Wiley-Blackwell is not responsible for the content
or functionality of any supporting information supplied by the authors. Any
queries (other than missing material) should be directed to the corresponding
author for the article.

the “green revolution” in Asia) may be out of reach for many
locations in the near future (Kydd et al., 2004; Reardon et al.,
1999).

Malawi is a small but densely populated country in SSA,
with 52.4% of the population living below the poverty line
(GoM, 2005). Agriculture is the major source of income
for rural households (63.7%) but landholdings are small,
and land productivity is generally low (Jamu and Chimatiro,
2004). Major constraints on land productivity include lack
of irrigation and environmental degradation (Benson et al.,
2002).

One potential approach to SAI involves agroecological pro-
grams that rely heavily on local farming knowledge, improved
management of diverse on-farm resources, integration among
various farm enterprises, and intensive use of organic inputs
(Altieri et al., 1998; Sugunan et al., 2006). With the aim of
providing a sustainable intensification option for small-scale
farmers, the WorldFish Center, formerly known as ICLARM
(International Center for Living Aquatic Resources Manage-
ment), has been working in Malawi since the early 1980s with
the Department of Fisheries, the University of Malawi, and
the Ministry of Natural Resources and Environmental Affairs
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on participatory development and dissemination of integrated
aquaculture–agriculture (IAA).

IAA, based on the concept of integrated resource manage-
ment, utilizes synergies among subsystems resulting in higher
farm productivity (Brummett and Noble, 1995; Sugunan et al.,
2006). The general idea of IAA is that a small pond stocked
with suitable fish and with materials available on the farm (such
as crop residues and by-products) used as feed/pond fertilizer
can be integrated in small-scale mixed-enterprises (Brummett
and Noble, 1995). Rather than merely producing fish, the pond
thus increases farm productivity by enabling synergistic inter-
actions among different farm enterprises (see Edwards, 1998;
Pant et al., 2005; Prein, 2002 for a detailed discussion of IAA
technologies). The IAA research implemented in Malawi also
comprises a new participatory approach to develop and trans-
fer those technologies; information and ideas are exchanged
interactively between farmers and researchers (Brummett and
Noble, 1995).

The objectives of this article are to (1) assess the impacts of
adopting IAA on small-scale farms in Malawi and (2) determine
the major driving and inhibiting factors of technology adoption.
The results provide valuable insights for other SSA countries
with similar agroecological, socioeconomic, and institutional
environments.

2. Data and methods

2.1. Data

A farm survey was conducted in early 2004 in six districts
(Zomba West, Zomba East, Mulanje, Mwanza, Thyolo, and
Mangochi), representing various agroecological and socioeco-
nomic conditions, in the Southern part of Malawi.1 In each
site, a random sample of 30 IAA farmers and 30 non-IAA
farmers was selected from a list of farmers kept by local ex-
tension workers. Out of 360 sample farmers, 315 (166 adopters
and 149 nonadopters of IAA) were interviewed; the remaining
farmers were not available. The survey covered information of
the 2003/2004 season and data were collected on (1) socioe-
conomic farmer profiles; (2) farming environment; (3) sources
of income and wealth status; (4) production systems; (5) in-
puts, output, and profitability of farming enterprises; (6) social
and institutional environments; and (7) food and fish consump-
tion. Some households could not provide detailed information
on quantity and price of some inputs, but provided total ex-
penditure by inputs. For technical efficiency analysis, we only
used the 239 complete observations (119 adopters and 120 non-
adopters).

The analysis presented in this article can be divided into
two parts: the first part identifies factors determining adoption
of IAA and thus establishes which technical, socioeconomic,

1 Poverty is more widespread in the Southern as compared to the Central and
Northern Region of Malawi.

institutional, and policy factors are associated with success-
ful adoption. In part two, the impact of IAA adoption on farm
productivity and income is assessed using overall technical effi-
ciency (score), total farm productivity (total factor productivity
score), profitability (US$/ha), and total farm income realized
(US$/ha/year) as indicators.

2.2. Overall framework

Beginning with Schultz (1953) and Griliches (1958), numer-
ous studies, conducted both ex post and ex ante, have exam-
ined the impacts of agricultural research on productivity and
output growth for a wide range of commodities and countries
(Alston et al., 1995; Maredia and Raitzer, 2006; Norton and
Davis, 1981; Peterson and Hayami, 1977; Raitzer and Kelley,
2008). Alston et al. (1995), Masters et al. (1996), and Walker
et al. (2008) provide guidelines on the conduct of impact as-
sessment in agriculture. Ex post studies on the impact of agri-
cultural research can be grouped into four general categories:
(1) aggregate economic rate of return assessments (e.g., Alston
et al., 2000; Evenson, 2001), (2) aggregate multidimensional
impact assessments (e.g., Thirtle et al., 2003), (c) disaggregate
economic rate of return assessments (e.g., Ahmed et al., 1994;
Griliches, 1958), and (d) disaggregate multidimensional impact
assessments (e.g., Adato and Meinzen-Dick, 2007; David and
Otsuka, 1994; Hazell and Ramasamy, 1991; Renkow, 1994). A
number of studies assess the impact of agricultural research in
SSA (Ahmed et al., 1994; Bokonon-Ganta et al., 2002; Masters
et al., 1998; Rukuni et al., 1998; Zeddies et al., 2001). A majority
of these are disaggregate economic rate of return assessments.
Learning from economic rate of return studies (aggregate or dis-
aggregate level) is mainly relevant for resource allocation deci-
sions. In contrast, multidimensional impact assessment studies
have broader capacity for learning with expected results being
potentially relevant to technology transfer and various other
areas related to economic development (Walker et al., 2008).

In this article, we focus on analyzing disaggregate multidi-
mensional farm-level impact of IAA in Southern Malawi. We
aim at identifying the factors that determine IAA adoption at
the household level and assessing the resulting changes in pro-
ductivity and income. A broader analysis of IAA impact on
the socioeconomic and national level as well as the nonmarket
impacts can be found in Dey et al. (2007). Similar to pre-
vious multidimensional technology impact assessment studies
(Walker et al., 2008), we have used mixed methods.

The overall hypothesis is that IAA leads to improved farm
productivity through the improved use of natural capital and
other inputs (Fig. 1). This is, first, because IAA practices are
a technological innovation increasing the productivity of all
inputs causing an upward shift in the production function. Sec-
ond, IAA improves human and social capital, thus increasing
farmers’ efficiency in the use of both conventional and natu-
ral resource capital. This increase in technical efficiency due
to higher human and social capital has an indirect impact on
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Fig. 1. Schematic diagram of impact of IAA on farm productivity and households’ welfare.

yield (Fig. 1). Improvements in human and social capital result
from interactive and participatory learning of new farming tech-
niques, and from formation of social institutions such as fish
farmers’ clubs. The importance of learning-by-doing was ear-
lier emphasized by Foster and Rosenzweig (1995); Bindlish and
Evenson (1997); and Cameron (1999). Third, IAA improves the
use and conservation of natural resource capital (such as soil,
water, and biodiversity) through integrated resource manage-
ment (i.e., recycling) as shown by Brummett and Costa-Pierce
(2002).

Overall, IAA adoption impacts the production process
through increased efficiency, improves the status of natural re-
sources on the farm, and increases productivity. This means that
IAA practices actually help to accumulate capital stocks (espe-
cially of natural, human, and social capital) and consequently
increase the capital base at farmer’s disposal. This is particularly
important for the sustainability of the system (Pretty, 1999).

In addition to the impact outlined above, it is anticipated
that (1) enhanced availability of fish as protein source will
lead to increases in home consumption and (2) higher income
will lead to more purchase of fish and other food. This results
in improved nutritional and health status especially of chil-
dren (Fig. 1). Subsequently, higher productivity of farmers can
lead to consumer benefits due to reduced market prices of fish
or increased employment opportunities on a more aggregated
level.

2.3. Adoption analysis

We hypothesize that the adoption process is a continuum,
as the intensity of technology use varies among the adopters
(Rauniyar and Goode, 1996). Thus, a two-stage framework was
applied to model the adoption process. In the first stage, we
identify the factors affecting the probability of IAA adoption.
In the second stage, we analyze the factors determining the
intensity of IAA adoption (i.e., level of integration of different
farm enterprises).

Various studies have used Tobit models for analyzing whether
to adopt and how much to adopt, assuming that farmers take
these two decisions jointly. The use of the Tobit model, how-
ever, restricts the directional effects to be the same for both the
adoption decision and degree of integration decision. In the case
of IAA adoption, a farmer in one region may be more likely
to adopt IAA than farmers in other regions; however, her level
of integration may be less than farmers in other regions due to
differences in local environment and extension service. Given
the nature of IAA, the decision to adopt (dig a pond) precedes
the decision on the intensity level (integration) of IAA. Double
hurdle models, as suggested by Cragg (1971), are often used for
cases where both decisions—whether to adopt and how much
to adopt—are made separately. In this case, a probit regression
on adoption (using all observations) is followed by a truncated
regression on the nonzero observations. In this article, we de-
fined the intensity of IAA adoption as the fraction of the number
of bioresource flows over the total number of enterprises per
farm. As some of the early adopters will have zero integration
of IAA, we cannot use the double hurdle method. An alternative
to the double hurdle method is the Heckman two-step approach
(Heckman, 1974), which also involves separate estimation of
the participation and intensification decisions. Amemiya (1974)
generalized the Heckman approach to include all observations
in the second step by developing a measure of the inverse Mill’s
ratio (IMR) for the zero observations.

In the first stage, we estimate a logit model to determine the
significance of various factors on the probability of adopting
IAA (P)

P [Y1 = 1] = 1

1 + e
−

(
β0+

∑
i

βiXi+ε

) , (1)

where Y1 is a binary variable representing adoption with a value
of 1 if the respondent is an IAA adopter and 0 if otherwise; X is
a vector of explanatory variables (covering human and physical
capital, social capital, and natural resources capital); β i are the
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corresponding coefficients to be estimated; and ε denotes the
error term.

In the second stage, we use Heckman’s two-step procedure
to analyze which factors determine the level of integration (i.e.,
the extent/intensity of IAA) that farmers are implementing on
their farm. In the first step, we use the logit model (Eq. (1)) to
calculate the IMR, the ratio of the value of the standard normal
density function to the value of the standard normal cumulative
distribution function, for all observation. In the second step, we
include these IMRs as an additional explanatory variable for
the IAA intensity function (Eq. (2)) and estimate it by ordinary
least squares (OLS) method using all observations

IAA INTi= f(X, IMRi, Ui), (2)

where IAA_INT is the ratio of the number of bioresource flows
over the total number of enterprises per farm, X is the vector of
explanatory variables used in Eq. (1), and IMR is the household
specific inverse Mill’s ratio.

2.4. Technical efficiency analysis

We hypothesize that IAA adoption increases technical
efficiency2 and thus leads to higher yield (due to direct and indi-
rect effects), higher productivity, and ultimately higher income.
This article evaluates the impact of IAA on the overall techni-
cal efficiency of the farm using the stochastic frontier approach.
The level and determinants of technical efficiency (TE) were
estimated to identify the causes of (in)efficiency and to analyze
whether IAA farmers have higher efficiency. The system under
investigation is small-scale farms with multiple enterprises.3

Since the adoption of IAA technologies is expected to have an
impact on other farm activities because of bioresource flows
among enterprises and improved human capacity, we followed
a whole farm approach rather than focusing on individual en-
terprises. The dependent variable in the stochastic production
frontier model was thus the total observed farm output. In this
article, we have used a variant of the stochastic function ap-
proach proposed by Battese and Coelli (1995), in which the
technical inefficiency effects in a stochastic frontier are an ex-
plicit function of other farm-specific explanatory variables, and
all parameters are estimated in a single-stage maximum like-
lihood (ML) procedure. The stochastic production frontier4 is
defined as

LnYi = β0 +
6∑

j=1

βj Ln(Xij ) + (vi − ui), (3)

2 It is also important to assess the impact of IAA on allocative efficiency. We
were unable to do so because of missing price data of inputs used.

3 Given that we are essentially dealing with a multiple output technology,
multiproduction distance function is an alternative approach. But we opted for
the computation of technical efficiency using stochastic frontiers because of
zero values in some of the outputs (i.e., not all farmers used all enterprises).

4 For comprehensive reviews of frontier literature, readers are referred to
Bauer (1990), Coelli (1995), and Greene (1997).

where subscript i refers to the ith farmer; Ln represents the
natural logarithm; Y is the observed farm output (US$/ha); X1

is the total seeding rate of all crop seeds combined (US$/ha);
X2 is the preharvest labor use of family and hired labor (person
days/ha); X3 and X4 are dummy variables for chemical and or-
ganic fertilizer application, respectively, which hold values of 1
if fertilizer is applied and 0 otherwise; X5 is the amount of chem-
ical fertilizers (mainly, nitrogen, phosphorous, and potassium)
applied (kg/ha); and X6 is the total amount of organic fertilizer
applied in the farm (kg/ha). Technically, X5 and X6 are more cor-
rectly expressed by maximum (X5, 1 − X3) and maximum (X6,
1 − X4), respectively. LnX5 (LnX6) is the logarithm of chemi-
cal (organic) fertilizer rate, if chemical (organic) fertilizer was
applied, and zero otherwise. This formulation of fertilizer vari-
ables (X3, X4, X5, and X6) takes explicit account of the fact that
some farmers did not apply chemical and/or organic fertilizer.5

If the fertilizer dummy variables (X3 and X4) are not included
to account for intercept changes, estimates for the responsive-
ness of farm output to fertilizer application is biased (Battese,
1997).

Eq. (3) has two error terms: one (vi) to account for ran-
dom shocks (weather conditions, disease, measurement errors
in the output variable, etc. and the combined effects of unob-
served/uncontrollable inputs on production) and the other (ui)
to account for technical inefficiency in production. The vi is a
random error that is assumed to be independently and identi-
cally distributed (iid) N (0, σ 2

v ) and independent of the ui; ui is
a nonnegative random variable. The model, defined by Eq. (3),
is a stochastic frontier function because the random error (vi)
can be positive or negative and the output values are bounded
above by the stochastic (random) variable, exp (Xiβ+vi).

It is assumed that ui is independently distributed as a trunca-
tion (at zero) of the normal distribution function with mean μi

that is defined as

μi = δ0 +
7∑

i=1

δizi, (4)

where zi are farm-specific variables that may cause inefficiency,
and δ0 and all δi are coefficients to be estimated. The farm-
specific characteristics are defined as following: Z1 is a dummy
variable for the type of respondents (1 if the farmer is practicing
IAA and zero otherwise); Z2 represents age as a proxy for
experience of the operator (number of years); Z3 represents the
education of the farmer (number of years formal schooling);
Z4 represents the farm area (ha) as a proxy for income; Z5 is
a dummy variable for the gender of the household head (1 if
male and zero otherwise); Z6 is a credit dummy variable (1
if the farmer has access to credit and zero otherwise); and Z7

is an extension dummy variable (1 if the farmer has access to
extension services and zero otherwise).

5 Battese et al. (1996), Battese and Broca (1997), and Sharma and Leung
(2000) have used a similar approach.
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The farm-specific technical efficiencies (TEi) are computed
by taking the exponentiation of the negative of ui, that is

T Ei = exp(−ui). (5)

The estimation of technical efficiencies is based on the con-
ditional expectation of exp(−ui), given the model specifications
(Coelli, 1996; Battese and Broca, 1997).

2.5. Total factor productivity analysis

Productivity improvement can be achieved in two ways: (1)
by improving efficiency (i.e., farm operating more closely to
the existing frontier) and (2) by improving the state of the tech-
nology (i.e., an outward shift in the production frontier). The
most conventional measures of productivity and profitability
are production (yield) and return (gross margin) per unit area.
Such measures, however, fail to account for differences in input
and output prices across farmer groups and sites. More im-
portantly, partial productivity measures such as yield are not
appropriate in a multi output–multi input setting, such as the
IAA system that combines multiple enterprises. To overcome
such limitations, this article uses the concept of interspatial total
factor productivity to measure farm productivity and compare
IAA and non-IAA farmers. Interspatial total factor productiv-
ity (TFP) refers to the ratio of total farm production given all
the inputs used on the farm and is computed using the inter-
spatial Tornqvist–Theil Index (Martinez-Cordero et al., 1999).
The use of the concept of TFP allows us to capture the syner-
gies between different subsystems and to account for positive
or negative externalities to other farm enterprises or resources
created by the production process.

The interspatial Tornqvist–Theil Index (TI) is defined as

T Ii = 0.5
∑

l

Ln
[
Yil

/
Yl

]
(syil + syl)

− 0.5
∑

k

Ln
[
Xik

/
Xk

]
(sxik + sxk), (6)

where the subscript i refers to the ith farmer, l refers to the lth

output (maize, vegetables, and other), k refers to the kth input
(seed, fertilizer, labor), Ln refers to the natural logarithm, Yil is
the quantity of output (kg/ha), Yl is the average across farmers,
Xik is the quantity of input, syil is the share of the lth output
to the total gross return, sxik is the share of the kth input to
the total input cost, and syl and sxk are the average shares of
the lth output and kth input, respectively. Exponentiation of TIi

gives the productivity difference between the ith farmer and the
average farmer (TFPi), indicating how much more or less it
would cost for a particular farmer i as compared to the average
farmer to produce the same quantity of output per unit area
using the same technology.

2.6. Impact of IAA on farm income

We assess the contribution of IAA to overall farm income
using both nonparametric and econometric procedures. One of
the methodological challenges for impact assessment studies
is to deal with the attribution issue, and to establish causality
between intervention and change. In our case, IAA adopters
differ from nonadopters in characteristics that have not been
observed and affect both the decision to adopt the technology
and its outcome (e.g., ability or motivation). The mean differ-
ences in farm income between IAA adopters and nonadopters
may be (partially) caused by farmers’ characteristics rather than
their IAA adoption status. To correct for this possible selection
bias, we have used the nonparametric “propensity-score match-
ing” (PSM) method (Becker and Ichino, 2002) and Heckman’s
two-step procedure (as discussed earlier).

The first step of the PMS approach was to estimate farm-
ers’ propensity scores based on their basic characteristics (i.e.,
characteristics unaffected by the choice of IAA adoption) using
Eq. (1) (probability of adopting IAA). After farmers’ propensity
scores were estimated, the farmers are divided into groups with
similar basic characteristics. Then adopters and nonadopters are
compared within these groups.

For impact analysis, we then follow the so-called Heck-
man’s two-step procedure. In this approach, first, the proba-
bility of being an IAA adopter is estimated using a logit model
(Eq. (1)). Then, farm income (Eq. (7)) is regressed against a bi-
nary variable indicating IAA adoption, other household charac-
teristics, and the IMR from the probit model. The IMR corrects
the selection bias (see Greene, 2003; and Ravallion, 2005). The
income function is defined as

ln Li = β0 +
6∑

j=1

βjXij + β7IMR + μi, (7)

where β0, β1, and all β j are coefficients to be estimated; L is
farm income per hectare; IMR is the household specific inverse
Mill’s ratio; Xi1 is the IAA dummy variable; Xi2 represents Ln
of farm size (ha); Xi3 represents Ln of nonfarm income; Xi4

and Xi5 are dummy variables for access to irrigation and credit,
respectively; and Xi6 represents education of the household head
(number of years of formal education).

3. Adoption of integrated aquaculture–agriculture

Rogers (2003) argues that the diffusion of innovations de-
pends on the characteristics, preferences, and environment of
individual adopters. In other words, a farmer is expected to
choose whether or not to adopt a technology based on the match
between her assets, the technology’s requirements, and her per-
ception of that technology’s suitability for her needs. The papers
of Feder et al. (1985), Sunding and Zilberman (2001), and Doss
(2006) offer comprehensive reviews of theoretical and empiri-
cal literature on the adoption of agricultural technologies.
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Table 1
Key characteristics of IAA and non-IAA respondents

Variable IAA farmers (n = 166) Non-IAA farmers (n = 149) All (n = 315)

Average age (years)∗∗∗ 45.51 39.88 42.85
Average household size (persons) 5.19 4.9 5.05
Average number of male adults 1.12 0.99 1.06
Average number of female adults 1.25 1.17 1.22
Average farm size (hectare)∗∗∗ 2.30 1.47 1.90
Average number of farm enterprises∗∗∗ 4.10 3.10 3.60
Average number of bioresource flows∗∗∗ 2.8 0.01 1.37

Male headed households (% HH) 68 44 55
Ownership of land (% HH) 97 97 97
Access to credit (% HH) 25 10 16
Access to extension services (% HH) 77 40 50
Access to irrigation (% HH) 39 49 45

Land type (% of total land)
Homestead 22 30 26
Lowland 37 28 33
Upland 32 31 32
Wetland (dimba) 10 10 10

Topography (% of parcels)
Flat 27 21 24
Gentle slope 57 62 59
Others 16 17 16

Source of water (%)
Rainfall 75 78 76
Water course (natural) 9 8 9
Well 6 4 5
Others 10 10 10

Notes:
∗, ∗∗, and ∗∗∗ indicate significant difference in group means at 0.1, 0.05, 0.01 level, respectively.
Statistical test for equality of mean was not conducted for variables expressed in percentage term.

The variables Xi that were included in our analysis to explain
IAA adoption fall into the two general categories

Farm and farmer characteristics

• Age (years) of household (HH) head
• Gender of HH head (male = 1, female = 0)
• Education of household head (number years of schooling)
• Household members that were trained in IAA (number)
• Person–land ratio (total number of family members/hectare)
• Land area (hectare) as proxy of farm income
• Farm land tenure (ownership = 1, others = 0)

Biophysical and social environment

• Access to credit (access = 1, no access = 0)
• Access to extension service (access = 1, no access = 0)
• Access to irrigation (access = 1, no access = 0)
• Presence of (dimba) wetland area (present = 1,

not present = 0)

Table 1 gives an overview of sample averages for these ex-
planatory variables, showing any differences between IAA and
non-IAA farmers. There is a significant difference in average
age of the household heads in the survey sample, which is 45

and 40 years for IAA and non-IAA respondents, respectively.
Older farmers may be more likely to undertake fish farming
because they have the required skills, resources, and experi-
ence. The average family size of the IAA respondents was
slightly larger (5.2 vs 4.9 persons) but the difference is not
statistically significant. Also, the number of male and female
adults is higher among the IAA respondents compared to the
non-IAA respondents; though the differences between the two
groups are not statistically significant. This has implications
on the type and quantity of family labor available for aquacul-
ture farming. Aquaculture production is generally undertaken
by male-headed households individually or by female-headed
households in groups. However, some individual female-headed
households have fishponds.

The IAA respondents have a significantly larger average farm
area than the non-IAA respondents.6 The total farm area can
include different natural resource types that can be consid-
ered as separate management units with distinct usage. Farm-
ers distinguish homestead, lowland, upland, and wetland based
on tenure, topography, soil type, and water supply (Lightfoot

6 The farm sizes of the surveyed farmers are much larger than the average farm
size in Southern Malawi (0.89 ha in 2004/5). In Malawi, marginal areas such
as waterlogged depressions (dambo) have been utilized for IAA technologies
(Brummett and Noble, 1995) and including these areas results in much larger
farm size.
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et al., 1993). The staple crop in Malawi is maize, but smallholder
farming systems normally also comprise a variety of vegetable
and fruits mainly for household consumption and to supply lo-
cal markets. The IAA farmers have more land in the lowland
compared to non-IAA respondents. Low-lying areas are partic-
ularly suitable as pond sites, because they have very shallow
groundwater levels and are in many cases considered marginal
land that is not used for agricultural production. The difference
in access to flat land (gentle slopes) in absolute terms is statisti-
cally significant between IAA and non-IAA respondents. Such
flat land is usually suitable for fishpond construction and opera-
tion as it is mainly associated with clay soils. A majority of both
IAA and non-IAA respondents (97%) hold single ownership of
the parcels that they farm. For both groups of respondents, rain-
fall is the primary source of water for farming enterprises and
most water sources are seasonal in nature (Table 1).

The average number of bioresource flows among the IAA
respondents was 2.8 (Table 1) and the maximum number was
as high as 8 bioresource flows. The actual level of integra-
tion is primarily governed by the number of enterprises, their
relative dimension and distance to each other and to fish-
pond and homestead. Within an IAA farming system, increas-
ing levels of integration (i.e., material flows) are gradually
achieved over time. This explains why 18% of IAA farmers who
were at an early adoption stage did not have any bioresource
flows.

The estimated adoption function (Eq. (1)) and IAA intensifi-
cation function (Eq. (2)) are presented in Table 2. Results show
that farmers who have access to extension services are more
likely to adopt IAA, ceteris paribus (Table 2). This is not sur-
prising and also holds true for the adoption of other knowledge
intensive technologies such as livestock rearing, as shown in a
recent study in Tanzania (Abdulai and Huffman, 2005). Also,
the likelihood to adopt IAA is higher for older farmers with
larger farm area7 and a greater number of enterprises. Higher
formal education did not lead to higher IAA adoption. How-
ever, once adopted, the level of education increased the level
of integration of IAA practices. It needs to be stressed that the
level of formal education might be far less relevant for adoption
decisions than learning-by-doing, which might lead to a gradual
intensification of IAA. In the existing literature, evidence of the
relationship between formal education and agricultural tech-
nology adoption is mixed (Asfaw and Admassie, 2004; Lipton
et al., 2002). Some studies conducted in developing countries
(for example, Godoy et al., 1998, in Bolivia; Mukhopadhyay,
1994, in India; Njoku, 1990, in Nigeria) reveal that being ed-
ucated does not necessarily influence agricultural technology
adoption. Yirga et al. (1996) found that literacy is not signifi-
cantly related to the probability of adopting improved wheat in
Ethiopia, but positively and significantly related to the intensity
of technology adoption.

7 It needs to be emphasized that even these larger farms are still small-scale
with per capita land holdings of around 0.4 hectares.

Table 2
Determinants of IAA adoption

Method of estimation Stage 1: Adoption Stage 2: Level of
(Eq. (1)) integration (Eq. (2))

Logit Model Two-step Heckman

Estimates S.E. Estimates S.E.

Intercept −2.25∗∗∗ 0.71 0.41074 0.48113
Age (years) 0.02∗∗ 0.01 0.0026 0.00303
Education of household

head (years)
−0.12 0.09 0.05174∗ 0.029

Gender of household
head (male = 1)

0.43 0.48 0.03342 0.14353

Persons in HH trained
in IAA (number)

0.79∗∗∗ 0.25 −0.08299 0.06712

Extension dummy
(access = 1)

1.01∗∗∗ 0.27 −0.19229 0.16444

Credit dummy
(access = 1)

0.50 0.36 −0.03878 0.0992

Land area (hectare) 0.30∗∗ 0.13 0.02087 0.02012
Person–land ratio

(number/hectare)
−0.01 0.02 0.02645∗∗∗ 0.00865

Dimba area dummy
(present = 1)

−0.21 0.34 0.25346∗∗ 0.10512

Irrigation dummy
(access = 1)

−0.30 0.27 0.24738∗∗∗ 0.08936

IMR −0.34705 0.2803

Dep. Variable: Stage 1: 1 if IAA (N = 166); 0 otherwise (N = 149); Stage 2:
Level of integration measured as the ratio of the number of bioresource flows
over the total number of enterprises per farm (N = 166 + 149 = 315).
∗Significant at α = 0.10; ∗∗Significant at α = 0.05; ∗∗∗Significant at α = 0.01.

At the same time, access to irrigation enables a higher inten-
sity of adoption (Table 2). Similarly, as expected, the coefficient
of the dimba dummy (presence of land with residual moisture
or high water table) is significant and positive for the IAA inten-
sification function. Ownership of dimba land enables farmers to
practice integrated farming. The available land area is a signifi-
cant explanatory variable in both stages, having a positive effect
on IAA adoption and the level of integration. The person–land
ratio positively affects the level of IAA integration, which high-
lights that IAA is a labor intensive technology. Land tenure was
not included in the regression as most farmers owned the land
they were cultivating, and the distance to markets could not be
used as explanatory variable due to a large number of miss-
ing values and very high variation of distances stated within
villages.

Additional factors that may affect the management of natural
resources and thus the decision to adopt IAA practices are local
marriage and inheritance patterns (Hansen et al., 2005), existing
sociocultural norms (ICLARM and GTZ, 1991) and farmers’
subjective perceptions of the characteristics of new technolo-
gies (Adesina and Baidu-Forson, 1995). In a recent study on
IAA systems in Thailand, Pant et al. (2005) stress the impor-
tance of market access as precondition for the intensification of
production.
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Table 3
Estimated stochastic frontier production and technical inefficiency functions

Estimates S.E. Marginal effects

Stochastic production function
Constant 3.187∗∗∗ 0.515
Ln seed (US$/ha) 0.419∗∗∗ 0.047 0.419
Ln labor (person day/ha) 0.510∗∗∗ 0.108 0.510
Chemical fertilizer dummy −0.230 0.242 −0.146
Organic fertilizer dummy −1.406∗∗∗ 0.597 −0.500
Ln chemical fertilizer (kg/ha) 0.131∗∗∗ 0.055 0.131
Ln organic fertilizer (kg/ha) 1.555∗∗∗ 0.726 1.555

Technical inefficiency function
Constant 0.291 0.537
IAA practice dummy −0.310∗∗ 0.162 −0.495
Age (y) −0.007∗ 0.001 −0.909
Education (y) −0.022 0.066 −0.135
Farm area (ha) 0.033 0.025 0.190
Male household head dummy −0.534 0.472 −0.890
Access to credit dummy 0.089 0.277 0.043
Extension dummy −0.224 0.167 −0.339

Variance parameters
�2 0.422∗∗∗ 0.056
γ 0.813∗∗∗ 0.067

∗Significant at α = 0.10; ∗∗Significant at α = 0.05; ∗∗∗Significant at α = 0.01.
N = 119 (IAA) and 120 (non-IAA).

4. Impact on technical efficiency

We used the FRONTIER 4.1 package (Coelli, 1996) to calcu-
late the maximum likelihood (ML) estimates of the parameters
of the stochastic production functions defined by Eqs. (3) and
(4), and the farm-specific TE defined by Eq. (5). In the process,
the variance parameters of the livelihood function (σ 2

u and σ 2
v)

are expressed in terms of the parameterization: σ 2 = (σ 2
u + σ 2

v )
and γ = (σ 2

u /σ 2). The value of γ ranges from 0 to 1, with
values close to 1 indicating that the deviations from the frontier
are due mostly to technical inefficiency.

The production function defined in Eq. (3) is of Cobb-
Douglas (CD) specification. We have tested the CD specifi-
cation against a translog specification. The significance of the
interaction and square terms was jointly tested using likelihood
ratio (LR) tests. The value of the loglikelihood function of the
CD specification is −228.99, while it is −223.75 for the translog
specification. The estimated generalized likelihood-ratio (LR)
statistic is 10.47 which is smaller compared to the critical value
(chi-square statistic) of 18.31 at 95% level of significance and
10 degrees of freedom. This shows that there is no gain in using
translog form over the CD form defined in Eq. (3).

The ML estimates of the frontier production function
(Eq. (3)) and those of the technical inefficiency function8 (Eq.
(4)) are presented in Table 3. We have also computed the

8 The software FRONTIER 4.1 simultaneously estimates the parameters of the
stochastic production frontier and the technical inefficiency model. Numerous
papers use the FRONTIER 4.1 package and report technical inefficiency in this
way, such as Battese et al. (1996); Wilson et al. (1998, 2001); Yao and Liu
(1998); Sharma and Leung (2000); and Dey et al. (2005).

marginal effects to show the partial elasticities of the explana-
tory variables on both the frontier and the inefficiency func-
tions (Table 3). The estimated marginal effects show relative
importance of the different explanatory variables. All the es-
timated coefficients of nondummy variables are positive (i.e.,
β i ≥ 0) indicating that the estimated function is globally con-
sistent (Sauer et al., 2006). All variables (except the chemical
fertilizer dummy) included in the stochastic production func-
tion are highly significant (Table 3) indicating their importance
in determining yield levels. The estimates of the stochastic fron-
tier indicate that the elasticities of seed cost and labor use are
approximately 0.42 and 0.51, respectively. Estimated elastic-
ity of chemical fertilizer is about 0.15, whereas that of organic
fertilizer is about 1.55.

Relatively large and significant elasticity of organic fertilizer
implies positive contribution of IAA to farm productivity. The
IAA system gives farmers an opportunity to increase recycling
flows through integration among farm enterprises, and thereby
to increase the use of organic fertilizer. Prior to engagement
with the concept of IAA, farmers are often unaware of the
nutrient management opportunities through bio-resource flows.
Only one of the 149 sampled non-IAA farms recycles on-farm
materials, that is, has some bioresource flows.

The value of the variance parameter, γ , associated with the
variances in the stochastic production frontier is significant,
suggesting that technical inefficiency does significantly influ-
ence the small-scale agriculture production in Malawi. Since
the dependent variable in Eq. (4) is defined in terms of tech-
nical inefficiency, a farm-specific variable associated with the
negative coefficient will have a positive impact on technical
efficiency and vice versa. The estimated technical inefficiency
function reveals that the dummy variable for IAA is negative
and significant, indicating that on average IAA farmers are
more technically efficient than non-IAA farmers. There are at
least two reasons for this higher technical efficiency: first, IAA
adopters use farm resources more efficiently because “an out-
put from one subsystem in an integrated farming system which
otherwise may have been wasted becomes an input to another
subsystem resulting in a greater efficiency” (Edwards, 1998).
Second, IAA adoption does increase human and social capital as
a result of learning new input use techniques and subsequently
experimenting with and adapting them to the specific on-farm
conditions. Results also indicate that older farmers are more
technically efficient than younger farmers, as they have more
farming experience and had thus more time for the learning and
adaptation process (Table 3).

Fig. 2 depicts the frequency distribution of the estimated TE
scores. On average, the technical efficiency score of IAA farm-
ers is 90%, while it is only 65% for non-IAA farmers. None
of the IAA farmers has a technical efficiency score of less than
50%, while around 40% of the non-IAA farmers have a TE
score lower than that. These figures reveal that with better pro-
duction and social environments, such as those created through
IAA and participatory extension approaches, poor farmers in
Malawi can improve their efficiency substantially—despite
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Fig. 2. Distribution of technical efficiency scores for IAA and non-IAA farmers.

Table 4
Comparison of farm profitability (US$/ha/year) and productivity

By household type
Impact

Level of integration

IAA Non-IAA (%) Low High

Gross income 163 93 76 101 205
Total cost 67 51 30 54 74

Seed 14 10 32 11 16
Fertilizer 22 16 35 18 22
Manure 3 2 38 2 5
Labora 28 22 25 23 32

Net income 96 41 134 47 131
TFP 1.33 1.20 11 1.18 1.52

N = 166 (IAA) and 149 (non-IAA).
aLabor was valued based on the ruling wage rates. The respondents were asked
to indicate how much they would charge for the same amount of work if
they were engaged in piecework. Where a household could not be engaged in
piecework, they were asked how much they would have paid somebody to do
the work.

being poor.9 These results are consistent with findings of Arju-
manara et al. (2004) and Dey et al. (2005) who have reported
TE scores of more than 85% for small-scale fish farmers in vari-
ous Asian countries. It is, however, important to emphasize that
higher TE of farmers in utilizing a particular technology may
not be enough for rapid dissemination of that technology. As
discussed earlier, favorable biophysical conditions, and an en-
abling socioeconomic environment are important prerequisites
for technology adoption.

5. Impact on productivity, farm income, and profitability

The TFP Index presented in Table 4 reveals that on average,
IAA farmers in the Southern Region of Malawi are 11% more

9 For a recent discussion of Schultz’s “poor but efficient” hypothesis, readers
are referred to Abler and Sukhatme (2006).

productive than non-IAA farmers (TFP of 1.33 for IAA farm-
ers versus 1.20 for non-IAA farmers). Moreover, IAA farmers
had a 134% higher income per hectare. Of special interest is
the difference in productivity and profitability as the level of
integration (number of bioresource flows between enterprises)
increases. There is a positive association between productivity
and profitability with the level of integration (Table 4). This can
be attributed to the synergies between various farm enterprises
(e.g., use of pond water for irrigation of plots) which lead to an
increased cropping intensity and enable farmers to grow high
value crops such as vegetables.

Moreover, IAA farmers had an annual farm income of
US$185 which is about 1.6 times as much as non-IAA farmers’
average of US$115. Around 73% of the total income of the IAA
respondents was derived from farming compared to only 66%
for non-IAA respondents—the difference is statistically signifi-
cant at the 5% level. Fish culture directly contributed an average
of US$21 (about 8%) to the annual farm income of IAA farm-
ers (Fig. 3). While farm productivity and profitability as well
as farm income were higher for IAA farmers, non-IAA respon-
dents had higher off-farm incomes (earned from outside the
homestead, e.g., employment or piecework) and more income
from nonfarm activities (e.g., business within the homestead),
though the difference is not statistically significant. IAA farm-
ers spent an average of 72% of their time farming compared
to 66% of the time spent by non-IAA respondents. Thus, on
average, IAA farmers spent 24 person-days per hectare a year
more than non-IAA farmers, for example, by recycling their
produce or byproducts among the various enterprises; moving
by-products between enterprises and the pond; managing the
pond dikes; and stocking, harvesting, and selling fish. However,
pond maintenance activities are normally scheduled in times of
low labor demand from agricultural activities, thus smooth-
ing the labor demand over the year and providing an alterna-
tive to off-farm employment during slack times for agricultural
labor.
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Fig. 3. Household income among IAA and non-IAA households.

Table 5
Effects of IAA on farm income matching estimate

Dependent variable Matching estimates S.E.
(nearest neighbor method)

Ln (total farm income) 0.2208∗∗∗ 0..0396
Observation

IAA adopter (treated) 166
Non-IAA farmers (control) 149

∗∗∗Significant at α = 0.01.

As indicated in Section 3, the effect of IAA adoption on to-
tal farm income was estimated through two different methods,
the nonparametric PSM technique and the econometric Heck-
man’s two-step procedure. For the PSM technique, we have first
used the estimated logit model (reported in Table 2) to predict
propensity scores, and then followed two different matching
methods, that is, the nearest neighbor method (NNM) and the
kernel-based matching (KBM) method. The “nearest-neighbor”
causal effect of IAA adoption on household farm income is
highly significant and equal to about 0.22, which is the average
difference between income of similar pairs of households but
belonging to non-IAA adopter status (Table 5). Given that in-
come is expressed in logarithmic form, the results imply that,
on average, farm income of IAA adopters is almost 22% higher
than income of nonadopters. The KBM yields similar results.
Overall, PSM estimates show that IAA adoption has a positive
and robust effect on household farm income in Malawi.

The estimated farm income function (Eq. (7)), based on
Heckman’s two-step procedure, is reported in Table 6. As the
explanatory variables were expressed in different forms, we
have also reported the marginal effects to show the partial elas-
ticities. The positive sign of the coefficient for the IAA dummy
indicates that on average, IAA adopters have higher net farm
income than nonadopters. Moreover, access to irrigation in-
creases per hectare farm income by 37%, ceteris paribus, while

Table 6
Farm income function (Heckman’s two-step estimation procedure)

Estimates S.E. Partial
elasticities

Intercept 8.520∗∗∗ 0.164
IAA dummy (1 if

practiced)
0.926∗∗∗ 0.269 0.488

Ln farm size (ha) −0.748∗∗∗ 0.073 −0.748
Ln nonfarm income 0.019 0.012 0.019
Irrigation dummy

(access to = 1)
0.373∗∗∗ 0.102 0.168

Credit dummy
(access to = 1)

0.115 0.136 0.018

Education of household
head (years of
schooling)

0.026 0.033 0.053

Inverse Mill’s Ratio −0.243 0.174
R2 0.328
F-value 21.360

DV: Ln farm income per hectare; ∗∗∗Significant at α = 0.01.

an increase of farm size by 1 hectare will decrease the per
hectare farm income by 75%. While bigger size of land hold-
ing increases the probability of adopting IAA, it is inversely
related to farm income per hectare. This finding is similar to
the famous inverse relationship between farm size and produc-
tivity. It can be explained by labor usage, in that large areas
are not cultivated as intensively as smaller ones. Given that
IAA is very labor intensive, income per hectare will be lower
for larger farms that are cultivated with less labor per hectare.
The estimated coefficient of nonfarm income is positive, though
statistically insignificant at the 10% level. This result implies
that nonfarm activities do not negatively affect farm income in
Southern Malawi and probably do not reduce labor availability
for farm activities. This is crucial because the availability of
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seasonal labor is a decisive influence on farmers’ technology
choice and can be an important constraint for adoption even
where land is in short supply as pointed out by Byerlee and
Heisey (1996).

Total annual household income was almost 1.5 times higher
for IAA respondents as compared to non-IAA respondents’
average income (US$254 versus US$174, respectively). Results
reported in this section reveal that adoption of IAA has increased
farm income without significantly decreasing nonfarm and off-
farm income. The productivity of family labor in IAA activities
is higher than alternative opportunities of using family labor for
off-farm activities, hence the overall return to labor from IAA
is higher. Therefore, though non-IAA farmers generate a higher
income from off-farm activities (renting out family labor), IAA
farmers have higher overall income by using their family labor
in IAA practices instead of selling it.

The increased farm income for IAA farmers came from (1)
extra income from fish culture and (2) additional nonfish farm
income. Farmers in the sample area who adopted IAA prac-
tices had a larger area for vegetable cultivation specially their
homestead and in the uplands (Dey et al., 2007).

6. Summary and conclusion

Regression analyses show that extension contact, farmer
training, better access to water, higher number of farm enter-
prises, and bigger farm size are associated with more adoption
of IAA technologies in Southern Malawi. While it is the some-
what larger farmers that tended to adopt IAA, all farmers in-
cluded in the sample had small holdings (an average farm size of
1.75 ha). Thus, IAA adoption is associated not only with a
stronger capital base but also offers a safety-net effect in which
farmers improve their access to food in general and protein in
particular. However, access to at least some land is a precondi-
tion for IAA adoption. This is similar to many other agricultural
innovations that landless people cannot adopt directly. Finally,
the adoption by somewhat larger farmers suggest what has been
observed in many other farming communities: marginal farm-
ers tend to be more averse to taking risks and are therefore
not likely to be among the first to adopt a new technology; in-
stead, they follow a wait-and-see approach (e.g., Binswanger,
1980; Ghadim et al., 2005; Howitt and Taylor, 1993). Group
or community-based approaches and training help small-scale
farmers to adopt new technologies such as IAA more easily.
One key element of the IAA approach is the participatory train-
ing of farmers and the technology dissemination through farmer
groups. This has important implications for the sustainability
of technology adoption. A study that evaluates the variation of
economic performance of IAA adopters and nonadopters over
a number of years (and diverse climatic conditions) could help
to back-up the hypothesis that IAA adoption as a diversification
of the existing farming system helps to reduce risk.

Once adopted, the IAA technology in southern Malawi is as-
sociated with total factor productivity (TFP) that is 11% higher

for adopters than nonadopters, technical efficiency scores that
are 35% higher, farm income per hectare that is 134% higher,
and total farm income that is 60% higher. It is also noteworthy
that the productivity of family labor in IAA activities on the
farm is higher than the productivity of off-farm opportunities,
that is, renting out family labor to other enterprises. Therefore,
though non-IAA farmers had higher income from off-farm ac-
tivities than IAA farmers, overall, IAA farmers had higher over-
all returns to family labor and thus higher household incomes.
Regression analysis also shows that having higher nonfarm in-
come is not associated with lower farm income in our sample.

The results highlight some of the benefits associated with
freshwater fish farming in integration with agricultural activi-
ties. Other indirect benefits may arise that are not visible in these
farm-level data, as shown by Dey et al. (2007). Such findings
illustrate the potential of IAA to contribute to poverty reduc-
tion and improvements in livelihoods in Malawi and possibly
other countries in SSA, which have similar conditions, espe-
cially Zambia, Mozambique, and also Cameroon, where IAA
practices have recently been adopted.
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