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Expected Returns and Volatility on the JSE Securities 
Exchange of South Africa 

 
Ronald Mangani † 

University of Malawi, Chancellor College 
 

 
Abstract: This paper explores the relevance of ARCH-type 
models in explaining stock return dynamics on the JSE. 
Although the evidence suggests that volatility is prevalent 
on this market, it is establish ed that the effects of shocks 
on volatility are symmetric, and that volatility is not a 
commonly priced factor. Hence, the standard GARCH(1,1) 
model provides the best description of return dynamics 
relative to its complex augmentations. Further, the model 
significantly, but less than fully, accounts for the observed 
non-linearities in the series. 

 

1. Introduction  
 
In prior work (Mangani, 2005), we provided evidence on stylised 
statistical properties of stock prices and returns using data from the 
JSE Securities Exchange of South Africa (hereafter, JSE). 
Specifically, it was shown that although JSE logarithmic stock prices 
were non-stationary processes, continuously compounded returns did 
not seem to contain a unit root. Secondly, the distributions of returns 
on the market were not consistent with normality, and showed very 
strong evidence of leptokurtosis as well as excess skewness. Finally, 
the distributions showed strong departures from the assumption of 
being independently and identically distributed (iid), implying that 
stochastic or deterministic non-linearities could characterise the 
return generating process. These results pointed to the possibility 
that the parameters of the model governing the return generating 
process on the JSE might not be constant over time, but rather 
dynamic. Consequently, static (unconditional) and iid-based asset 
pricing investigations, which dominated most work conducted on the 
JSE, could be improved upon by recasting them to a dynamic 
framework. The autoregressive conditional heteroscedasticity 
(ARCH) type of models, which assume that the dynamical behaviour 
is characterised by a time-dependent variance, provide one possible 
such framework.  

This paper, therefore, explores whether ARCH-type models 
could be used to explain stock return dynamics on the JSE. The 
motivation for this investigation is the common observation 
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documented in the literature that, even when the return series are 
themselves linearly unpredictable, their squares usually exhibit 
some linear dependencies over time. This observation provides 
evidence that the variance of return (i.e., risk) is not constant over 
time, but exhibits temporal dependence and predictability 
(Mandelbrot, 1963). The key implication of this observation is that 
the conditional variance (i.e., volatility) of return, rather than the 
unconditional variance, is an important determinant in the 
investment decision-making process. 

The class of ARCH-type models that could be explored to 
investigate the risk-return dynamics on the JSE is wide and 
growing, but this investigation was guided by the desire to establish 
(a) whether volatility was priced; (b) whether there existed volatility 
asymmetry; i.e., whether positive and negative shocks impacted on 
volatility differently; and (c) whether an ARCH-type model could 
account for non-linearities in the JSE returns. 

Most previous studies addressing this subject have focused on 
very well-developed markets. Although work has been done in other 
emerging markets as well, hardly any such investigations are 
documented for the JSE. The present study seeks to address this 
gap. 

The rest of this paper is organised as follows. Section 2 provides 
a brief overview of ARCH-type models, focusing on the models tested 
in the present study, and briefly reviews the literature. Section 3 
describes the methodologies followed, while the results of the 
investigation are presented and discussed in Section 4. Section 5 
summarises and concludes the paper. 
 
2. Theoretical Framework and the Literature 
 
The theoretical framework for modelling volatility and investigating 
its relationship with returns is usually traced to the original ARCH 
model developed by Engel (1982). Engel’s ARCH model for returns 
recognises that there is a distinction between the unconditional 
second moment (i.e., variance) and conditional second moment (i.e., 
volatility) of the return series, in the sense that the latter can change 
over time even if its corresponding variance measure is 
homoscedastic. Therefore, in order to capture this time-variability, 
the ARCH framework imposes an autoregressive structure on the 
conditional second moment. Thus, if tR  denotes linearly 
unpredictable (either uncorrelated or linearly filtered) continuously 
compounded return in period t  for a given security, and if a 
structural relationship is not assumed, tR  could be modelled as: 
 
 ttR µα += ,       (1) 
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 1−Ω ttµ ∼ ( )thN ,0 ,       (2) 
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 (1) gives the mean (expected) return equation, and shows that the 
expected return does not differ from its long-run average value, α , 
except by a random error term. (2) states that, conditional upon the 
set of information, denoted 1−Ω t , available in the preceding period, 
the error term is normally distributed with a mean of zero and a 
conditionally heteroscedastic variance, th . The error term is also 
serially uncorrelated by definition. The normality assumption could 
be relaxed in favour of more realistic distributions for tµ , most 
commonly Student’s t-distribution. Finally, by noting that 

( )12
−Ω= ttt Eh µ , (3) clearly models volatility as an AR( q ) process, 

where the regressors denote shocks that impact on volatility. 
Together, (1) to (3) describe the standard ARCH( q ) model, which 
has been found successful in describing the dynamics of various 
macroeconomic and financial variables. Among other applications of 
the model, see Engle and Kraft (1983) and Coulson and Robins 
(1985) on inflation, Weiss (1984) on macroeconomic variables, and 
Domowitz and Hakkio (1985) on foreign exchange markets. 

Bollerslev (1986) observed that, in order to avoid a violation of 
the non-negativity constraints in view of the long memory typically 
found in empirical work, the original ARCH model requires that an 
arbitrary, and usually long, linear declining lag structure be imposed 
in the conditional variance equation. The result is that the value of 
q  can usually not be small. In order to permit a parsimonious 
description of the process, he introduced the generalised ARCH 
(GARCH) model which extends (3) by including p  lagged conditional 
variance terms as extra regressors. The p  terms are commonly 
referred to as GARCH terms while the q  terms retain their 
description as ARCH terms in this formulation. The volatility 
equation in the GARCH( qp, ) model, therefore, becomes:  
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The parsimony achievable through the use of the GARCH model 

implies that the dynamics of th  that would best be described by a 
high-order ARCH process could just as well, and sometimes even 
better, be described by a low-order GARCH process. Therefore, 
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although higher order GARCH models are preferred in some studies 
(e.g., Mills, 1999; Yu, 2002), the GARCH(1,1) process has 
demonstrated adequacy in modelling many time series. Note that the 
ARCH model is nested in the GARCH model by setting 0=p , while 

0== qp  implies that the variance is a white noise process. Further, 
the quantity ∑ ∑+ ji θλ  measures the persistence of volatility. If 

∑ ∑ =+ 1ji θλ , then shocks on volatility die off very slowly (an 
integrated GARCH - IGARCH process). The formulation of the 
GARCH model assumes that ∑ ∑+ ji θλ < 1 and, in most empirical 
applications, it is the presence of near-integrated GARCH processes 
that have been established (Bollerslev, 1987; Baillie & Bollerslev, 
1989). Finally, by expressing (4) in terms of the squared errors, we 
have: 
 

 ∑∑ ∑
=

−
= =

−− ++++=
p

j
tjtj

q

i

p

j
jtjitit

11 1

222 εεθµθµλφµ ,  (5) 

 
where tε  is uncorrelated with zero mean. This conditional variance 
equation may also be expressed as an ARMA( pm, ) process, where 

},max{ qpm = .  
Both of the foregoing ARCH-type models assume that positive 

and negative shocks of equal magnitude impact on volatility 
similarly. Nelson (1991), Glosten, Jaganathan and Runkle (1993), 
and Zakoian (1994) suggested formulations that are useful in 
modelling the differential impact of positive and negative shocks, a 
phenomenon called volatility asymmetry.  

Nelson (1991) proposed a logarithmic conditional variance 
model in order to achieve exponential leverage effects, and to allow 
the model’s coefficients to become negative without the variance 
itself becoming negative. Moreover, standardised lagged errors, as 
well as their moduli, enter the volatility equation as extra 
regressors, in order to allow for differential effects of positive and 
negative shocks. The volatility equation in the resulting exponential 
GARCH (EGARCH) model of order ( qp, ) model is, therefore: 
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where iγ  are the leverage effect terms. A leverage effect is said to 
exist if ∑ iγ >0 , and asymmetric volatility is  established if 

∑ ≠ 0iγ . 
A simpler approach to modelling asymmetric effects on 

volatility is to introduce a dummy variable, say tD , into the 
conditional variance equation. Specifically, tD  assumes a value of 
unity for bad news (i.e., 1=tD  if tµ < 0 ), and a value of zero 
otherwise. This yields the Dummy GARCH (DGARCH) model 
proposed by Glosten et al (1993) (also called the GJR model) whose 
conditional variance equation is of the form: 
 

 ∑ ∑
=
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q
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2 θµγµλφ .   (7) 

 
In (7) the impact of good news on volatility is ∑ iλ , while that 

of bad news is ∑ +γλi . As in the EGARCH model, a leverage effect 
exists if γ > 0 , and the news effects are asymmetric if 0≠γ . Apart 
from its simplicity and the relative ease of interpretability of its 
parameter estimates, this formulation has been found useful in 
modelling volatility spillover effects from other markets (see Bae and 
Cheung, 1993, in Blake, 2000). Zakoian’s (1994) formulation is not a 
significant departure from the GJR model. For compactness of 
notation, we shall refer to the class of asymmetric volatility models 
as AGARCH models. 

The application of AGARCH models to data from various 
markets has produced conflicting conclusions. For instance, 
significant leverage effects were documented by Glosten et al (1993) 
for the US market, and by Siourounis (2002) for the Athens Stock 
Exchange, while Kasch-Haroutounian and Price (2001) found weak 
evidence in four emerging markets of Central Europe. Solibakke 
(2001) noted that asymmetric volatility was more significant in well 
traded than in thinly traded stocks in the Norwegian market. 

Although the above models are useful in describing stochastic 
non-linear dynamics, they do not explain explicitly the relationship 
between volatility and the expected return on an asset. In order to 
address the central question of pricing risk, ARCH-in-mean or the 
GARCH-in-mean models were proposed by Engel, Lilien and Robins 
(1987) and Bollerslev, Engel and Wooldridge (1988). These 
formulations introduce the conditional variance (or the conditional 
standard deviation) as an extra regressor in the mean equation. If 
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tR  denotes uncorrelated (but not necessarily linearly-filtered) return 
series, then (1) may be modified to: 
 
 ttt hR µβα ++= , or      (8) 

 ttt hR µβα ++= .      (8’) 
 

In (8) or (8’), α  may be comparable to the rate of return on a 
risk-free asset, while β  is the price of risk. The quantity of risk is 
estimated by the conditional variance or the conditional standard 
deviation. For the purpose of estimation, (8) and (8’) assume that the 
return series are uncorrelated. If the series exhibits correlation, then 
the two-stage procedure of fitting the model on already linearly 
filtered data would not yield consistent estimators. Instead, the 
mean equation would be estimated as an autoregression (Brock et al, 
1993:101). Finally, it is straightforward to see that when volatility is 
modelled as AGARCH (i.e., DGARCH or EGARCH) and the 
conditional variance (or standard deviation) term is also included in 
the mean equation, we obtain AGARCH-in-mean (AGARCH-M) 
models (i.e., DGARCH-M or EGARCH-M processes).  

In recent applications of ARCH-type models to financial data, 
the GARCH-M and AGARCH-M processes are probably the most 
frequently used, and have been found to provide conflicting but 
generally unsuccessful results regarding the pricing of volatility. 
Specifically, the results from emerging markets have not been 
particularly above board. For instance, Alles and Murray (2001) 
found that the GARCH-M model was unsuitable for Irish equity 
markets, while Poshakwale and Murinde (2001) found that volatility 
was not priced in the stock markets of Poland and Hungary. These 
results are in agreement with those documented by Solibakke (2002) 
for the thinly traded Norwegian equity market. A similarly weak 
relation between returns and volatility was documented by Baillie 
and DeGennaro (1990) for the US market, and by Poon and Taylor 
(1992) for the UK market, but support for a negative relation 
between the two was provided by Glosten et al (1993) within the US 
environment. 

Many other ARCH-type variants with equally witty acronyms 
have been proposed in the literature to capture various types of 
dynamics. An important extension, which nests most of the ARCH-
type models, was made by Ding, Granger and Engle (1993), who 
recognised that if the distribution of the return series’ error was non-
normal, then moments different from the second could best describe 
the dynamics. Finally, extensions of the ARCH-type models to 
multivariate frameworks, as well as to models that could explain 
deterministic chaos, have been accomplished (e.g., Engel & Kroner, 



               7

1995). Thus, it is not possible to provide an exhaustive account in 
this very dynamic field within the context of this overview. 

Although the importance of understanding the risk profiles of 
emerging capital markets is well-documented (Siourounis, 2002), the 
fact that very limited work in this area is reported for emerging 
markets is equally acknowledged (Kasch-Haroutounian & Price, 
2001). One notable feature of the emerging markets literature on the 
relevance of ARCH-type models is its surge over the last few years. 
The models’ increasing popularity appears to be premised on the fact 
that most of the emerging market studies seem to find them 
potentially capable of describing the unique features of the risk-
return relationships that characterise such markets. But of more 
relevance to this study is the discernible absence, in the emerging 
markets literature, of work on the JSE and other African stock 
markets, of which the JSE is the most dominant and active. The 
present study attempts to fill this gap. 
 
3. Research Methodologies 
 
3.1 Sampling and Data 
 
The choice of sample and study period was based on two major 
considerations. The first consideration was the trade-off between a 
long study period and a reasonably large number of securities to be 
included in the sample. The second consideration was based on the 
fact that on 24 June 2002, the JSE implemented the FTSE global 
classification system, and introduced the free float criterion which 
recognises that equity held for control purposes does not trade. 
These developments resulted in major changes to JSE sectors, the 
most notable being a significant decline in the number of stocks 
constituting the JSE All Share index from over four hundred and 
fifty to only one hundred and sixty as at 4 June 2002. Therefore, by 
studying only a few appropriately selected companies in the new All 
Share index, it became possible to capture a significant proportion of 
the truly trading segment of the JSE. On account of these 
considerations, this study randomly sampled forty-four stocks in the 
new All Share index for which continuous data were available since 
February 1973.  

The forty-four stocks constituting the study sample are shown 
in Appendix 1. In addition to capturing as much as 46 percent of the 
FTSE/JSE All Share index, the selected stocks were fairly well 
distributed across the Safex indices. Specifically, at the time, the 
sample captured over 48 percent of the Top 40 index, and about 52 
percent of the Resi index. Further, the sample respectively captured 
about 48 percent, 38 percent and 43 percent of the Indi, Fini and 
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Findi indices. Note that, on account of the free float criterion, five of 
the stocks in the final sample had a zero weighting in the indices. 

In addition to the individual stocks, two stock portfolios were 
used to capture the aggregate behaviour of the market. The first was 
the new JSE All Share index whose data were spliced back to 1983. 
This is denoted ALSI in the ensuing analysis. Further, we 
constructed an equally weighted portfolio of the forty-four stocks 
described above, denoted PORT hereafter. Because ALSI is 
dominated by resources stocks, the use of the equally-weighted 
portfolio provided a measure of aggregate market dynamics that was 
not significantly influenced by the dynamics of the resources stocks. 

The new JSE classification system partly provides a solution to 
the problems associated with non-synchronous trading and non-
trading. Specifically, the Ground Rules that govern the FTSE/JSE 
Africa Index Series make a provision to ensure that illiquid 
securities will be excluded from the All Share index (see FTSE 
2003a, Ground Rule 4.10). However, it is noted that our data could 
still exhibit some thin trading, particularly since they extended back 
to the 1970s. In the literature, it is recognised that a major effect of 
non-synchronous trading is to induce spurious autocorrelation 
(Atchison, Butler & Simonds, 1987), necessitating that corrective 
measures be employed to purify the data of linear dependencies. The 
present study applied such measures as discussed subsequently. 

The primary data used in this analysis were weekly close prices 
for each of the individual stocks and portfolios. The study period 
extended from 23 February 1973 to 5 April 2002 for the individual 
stocks and PORT, and from 23 December 1983 to 5 April 2002 for 
ALSI. For the period up to 22 September 2001, close price data on 
the individual stocks were obtained from an online database 
maintained by the Statistical Sciences Department of the University 
of Cape Town, while the rest of the data up to April 2002 were 
obtained from the Inet-Bridge online database. The close price data 
on ALSI, spliced back to 1983, were also sourced from the Inet-
Bridge.  

Using the close prices, continuously compounded returns at 
each time t , denoted tR , were computed as first differences of 
logarithmic price. After the necessary computational data 
adjustments, the final sample had 1519 observations of price and 
return series for each individual stock and PORT, and 954 
observations for ALSI. 
 



               9

3.2 Volatility Clustering 
 
In order to contextualise the relevance of ARCH-type models, the 
following exploratory analysis of the data was invoked. Initially, an 
autoregressive structure was used to filter linear dependencies in 
each of the raw return series, if their presence could be detected. The 
autoregressive structures in the correlated return series were chosen 
such as to filter autocorrelation of up to the tenth order, as 
confirmed by the Breusch-Godfrey serial correlation LM test. The 
series, therefore, represented linearly unpredictable returns. 
However, we further examined the ACFs and PACFs, as well as the 
Ljung-Box Q-statistics for the squares of each of these linearly 
independent return series. The full results of this investigation, 
available from the author upon request, showed strong evidence of 
positive linear dependencies in the squares of unpredictable returns. 
In Figure 1, stock TNT is randomly used to illustrate the typical 
pattern exhibited by most of the stocks and portfolios in the sample, 
and the cyclicality in volatility is quite clear. For most such series, 
the ACFs at lag one were significant, and the PACFs showed that 
autocorrelations at subsequent lags generally contributed relatively 
less to the patterns of the linear dependence. For most of the series, 
the Q-statistics were significant at 1 percent at very low lags. These 
findings entailed volatility clustering, and supported the use of 
ARCH-type models to describe return dynamics on the JSE. 
 
3.2 Model Estimation, Identification, and Appraisal 
 
Engel (1982), and Sumel and Engel (1994), among others, argued 
that the ARCH model was capable of accounting for volatility 
clustering in uncorrelated error terms with leptokurtic 
distributions1. In order to capture leptokurtosis, the normality 
assumption in (2) is sometimes relaxed in favour of fat-tailed 
alternatives, usually the Student’s t-density. This modification is 
particularly useful when the maximum likelihood parameters of the 
variance equation are estimated using the traditional BHHH 
algorithm due to Berndt, Hall, Hall and Hausman (1974). This 
notwithstanding, ARCH-type models are generally estimated using 
the maximum likelihood technique under the assumption that the 
error terms are conditionally normally distributed, so that the 
model’s parameter estimates are asymptotically efficient. Moreover, 
even if the error terms are not normally distributed, the estimates of 
the model are still consistent under quasi-maximum likelihood 
(QML) assumptions. In this study, in order to improve the 
convergence rate of the iterative process, the maximum likelihood 

                                            
1 See also Baillie and DeGennaro, 1990, as well as Poon and Taylor, 1992. 
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estimation technique used employed the Marquardt algorithm. 
Throughout, robust standard errors (and hence robust z-statistics) 
were obtained by utilising the QML method as proposed by 
Bollerslev and Wooldridge (1992). 
 
Figure 1 – Volatility clustering 
 
This figure shows plots of squared linearly unpredictable returns on 
TNT against time. 
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The general procedure followed to address the key objectives of 
this paper was to identify the appropriate ARCH-type model for each 
of the market aggregates and individual stocks. Rather than impose 
the GARCH(1,1) specification on the basis of its popularity, the 
values of p  and q  were empirically confirmed in the study. First, 
note that the patterns of the ACFs and Q-statistics of squared 
linearly unpredictable returns already discussed were comparable 
with those for squared residual estimates from an OLS estimation of 
(1), where tR  denoted linearly unpredictable returns. Although these 
results apparently suggested the GARCH(1,1) model for most of the 
series, there were some possible indications of relatively higher order 
GARCH processes. Therefore, following Solibakke (2001), ARMA(1,1) 
ARMA(1,2), ARMA(2,1) and ARMA(2,2) models were fitted to the 
squared residual estimates themselves2, and the optimal lag 
structure was initially chosen on the basis of the Akaike and 
Schwarz information criteria. The use of the information-based 
criteria (denoted AIC and SIC, respectively) was supported by the 
fact that they usually suggest parsimonious models, which are 
preferred in the GARCH procedure. The ARMA model that yielded 
                                            
2 In the case of return series for which serial correlation was filtered 
through an autoregression, this was equivalent to fitting an ARMA model 
on the squared unpredictable returns. 
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the lowest values of the two statistics was chosen for each stock. It is 
not unusual for the two statistics to suggest the same models, but 
where they yielded conflicting results, model selection was based on 
the relatively more conservative SIC.  

The SIC and AIC statistics are omitted in this paper to conserve 
space, but are available from the author upon request. Our 
examination of these statistics confirmed the documented popularity 
of the GARCH(1,1) model, which was clearly suggested for thirty-two 
of the forty-four individual stocks, in view of its direct analogy to the 
ARMA(1,1) model of squared residual estimates. In addition, there 
was some support for the GARCH(2,1) model, which was apparently 
appropriate in modelling the dynamics of both aggregates as well as 
ten individual stocks. Finally, both the GARCH(1,2) and the 
GARCH(2,2) processes could each be used to describe volatility in 
one stock only, namely SBK and JNC, respectively. It is also worth 
mentioning that almost two-thirds of the final GARCH specifications 
were mutually suggested by the SIC and the AIC. 

In order to validate the findings of the preceding analysis as far 
as the choice of higher order GARCH formulations was concerned, 
we estimated the suggested models as well as the GARCH(1,1) model 
for the two aggregates and twelve stocks involved. The estimation 
results, also available from the author upon request, clearly 
suggested that the GARCH(1,1) specification would be a significant 
improvement in modelling volatility for these series. While only six 
of the twenty-seven GARCH coefficients were statistically significant 
in the higher order models at 5 percent, all such coefficients were 
very significantly positive in the low-order specification. In addition, 
the low-order model yielded improvements in the statistical 
significance of ARCH coefficients for quite a few securities, although 
there were some declines in the log likelihood functions for PORT 
and eight stocks. Further, only three of the fifteen higher order 
parameters were themselves significant. These results generally 
suggested that the GARCH(1,1) model was the most appropriate for 
the JSE. 

Augmentations of the model to capture asymmetric volatility 
effects and the pricing of volatility was a straightforward exercise. 
As presented in Table 1, an examination of the log likelihood 
functions generated by the various models provided prima facie 
justification for such extensions, since the extensions yielded higher 
log likelihood functions than those derived from the standard 
GARCH model, except for stocks AGL and WLO. It should be noted 
that, even after a great deal of re-specification efforts for the mean 
equation, the parameters of the in-mean models could not converge 
in the case of seven stocks (i.e., AGL, ASR, AVI, BAW, DEL, DUR 
and MLB). Further, note that on the basis of the log likelihood 
function, the DGARCH-M model could be most preferred among the 
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four models, since it was suggested for sixteen of the thirty-seven 
stocks that encountered no parameter convergence problems during 
model estimation, as well as the market aggregates.  

A specific-to-general modelling procedure was pursued in the 
investigation. Thus, the suggested GARCH models were first fitted 
to each of the series, and these were subsequently generalised in an 
attempt to capture some of the salient issues discussed in the 
previous section. In order to investigate the presence of asymmetric 
effects of shocks on volatility, both the EGARCH and the DGARCH 
models were attempted. Following Mills (1999), the choice between 
EGARCH and DGARCH was initially based on simple comparisons 
of the values of log-likelihood functions generated by the models for 
each series, a higher value being preferred. Table 1 shows that the 
DGRACH model was suggested for thirty securities, while the 
remaining sixteen (including the aggregates) could be modelled as 
EGARCH processes. In an attempt to substantiate this observation, 
a comparison between the estimation results of the EGARCH and 
DGARCH models for the sixteen securities was made, and the 
estimation results are summarised in Table 2.  

Focusing on the statistical significance of the ARCH and 
GARCH terms in Table 2, it was noted that the EGARCH model 
performed at least as well as the DGARCH model for both 
aggregates as well as eleven of the fourteen stocks. The notable 
exceptions were ASR, MBL and TRE, where the DGARCH model 
was somewhat a better fit. More importantly, it was further noted 
that the coefficient for the leverage effect term was negative in the 
EGARCH model for virtually all but one stock (i.e., BAW), while all 
but two stocks (i.e., BAW and MLB) and both aggregates yielded 
positive leverage effect coefficients in the DGARCH model. Since a 
positive coefficient was consistent with a priori expectations, there 
was no compelling theoretical reason to suggest that the EGARCH 
model was a better fit. Hence, we chose to model all the securities as 
DGARCH processes. 
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Table 1 – Log likelihood functions of the ARCH-type models 
This table presents the log likelihood functions for the various ARCH-type models 
fitted to the return series. ♦ identifies the log likelihood function-preferred model 
among all models. The log likelihood function for the preferred AGARCH model is 
grey-shaded. NC indicates parameter non-convergence. 
 

(a) Stock portfolios 

Portfolio GARCH DGARCH 
EGARCH 

GARCH-M 
DGARCH-

M 
ALSI 2093.781 2094.239 2096.955 2096.569 2096.977♦ 

PORT 3774.011 3776.796 3777.181 3775.024 3777.510♦ 

 
(b) Individual stocks 

Security GARCH DGARCH 
EGARCH 

GARCH-M 
DGARCH-

M 
AFE 2424.357 2424.388 2410.140 2425.127 2426.040♦ 

AFX 2652.717 2653.400 2635.509 2653.012 2654.544♦ 
AGL 2265.717♦ 2174.754 2202.770 NC NC 
ALT 2477.569 2478.599♦ 2425.509 2473.249 2442.856 

ANG 2232.506 2233.111♦ 2232.187 2231.545 2232.259 
ASR 1473.714 1481.040 1550.606♦ NC NC 
AVI 2511.434 2511.666♦ 2400.071 NC NC 

BAW 2526.944 2543.911 2553.706♦ NC NC 
BVT 2592.865 2608.105♦ 2548.039 2591.797 2606.626 
CHE 2699.758 2713.322 2667.800 2701.811 2718.101♦ 
CRH 1733.839 1734.656♦ 1701.928 1733.462 1734.325 
CTP 2364.497 2376.305 2376.675 2366.893 2377.737♦ 
DEL 2351.470 2362.415♦ 2202.939 NC NC 
DUR 1572.637 1572.746 1571.002 1579.237♦ NC 
ECO 2681.322 2686.619♦ 2680.154 2678.268 2684.024 
ELH 2437.374 2449.065 2419.634 2438.810 2449.819♦ 
FOS 2548.144 2557.855 2541.984 2548.977 2558.890♦ 
GMF 2322.692 2322.953♦ 2304.764 2321.013 2321.025 
HAR 1962.282 1963.745 1963.038 1964.117 1965.997♦ 
HLH 2391.601 2392.184 2398.420♦ 2383.253 2384.087 
HVL 2289.434 2291.965 2293.894♦ 2287.854 2288.530 
IMP 2158.371 2162.014♦ 2160.772 2156.852 2160.741 
JCM 2123.012 2124.983 2036.970 2155.436 2163.069♦ 
JNC 1853.832 1862.793 1320.556 2029.186 2042.138♦ 
LGL 2671.537 2678.816 2617.860 2672.847 2679.458♦ 
MAF 2439.468 2528.479♦ 1989.186 2406.177 2500.892 
MLB 2030.714 2038.777 2100.796♦ NC NC 
NED 2635.625 2648.688 2651.377♦ 2635.679 2649.106 
NPK 2751.847 2752.966 2761.470♦ 2750.201 2752.885 
OCE 2526.558 2526.721 2537.319♦ 2528.553 2528.579 
PAM 2513.450 2516.898 2512.783 2514.367 2517.623♦ 
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PIK 2312.804 2315.272 2300.891 2315.308 2315.526♦ 
PPC 2889.467 2890.253 2901.400♦ 2890.260 2890.846 
REM 2175.333 2186.647 2177.824 2224.578 2238.670♦ 

RLO 2415.841 2416.101♦ 2412.714 2413.922 2413.983 
SAB 2682.258 2682.727 2662.638 2686.976 2686.989♦ 
SAP 2346.042 2347.170 2352.433♦ 2347.279 2348.555 

SBK 2738.245 2738.435 2731.274 2745.576 2745.767♦ 
TBS 2745.423 2754.858♦ 2703.367 2744.775 2754.464 
TNT 2511.125 2513.876 2519.795♦ 2509.110 2511.965 
TRE 1337.815 1344.081 1434.371♦ 1387.529 1328.187 
VNF 2219.484 2222.408♦ 2184.496 2221.226 2221.727 
WAR 1794.836 1795.882 1794.778 1795.687 1796.637♦ 
WLO 2522.632♦ 2514.562 2512.309 2514.530 2514.559 

 
Table 2 – ML estimation of AGARCH models: selected 

securities 
This table shows the maximum likelihood estimates (with robust z-statistics in 
parentheses) of the DGARCH and EGARCH models for the sixteen securities for 
which the EGARCH model was preferred to the DGARCH model on the basis of the 
log likelihood function (see Table 4.4). For both models, the conditional mean 
equation was (4.1). The conditional variance equations were (4.6) for EGARCH and 
(4.7) for DGARCH.  * denotes statistical significance at 1%, while ** denotes 
significance at 5%. 
 
(a) Stock portfolios 
 

Portfolio 

Model 

α φ λ1 γ θ1 

ALSI 

DGARCH 
 

EGARCH 

0.000 
(0.320) 
0.000 

(0.350) 

0.000 
(1.806) 
-0.000  

(-2.52)** 

0.102 
(1.567) 
0.248 

(3.755)* 

0.041 
(0.544) 
-0.051  

(-1.167) 

0.786 
(10.363)* 

0.897 
(18.695)* 

PORT 

DGARCH 
 

EGARCH 

0.000 
(0.411) 
0.000 

(0.157) 

0.000 
(3.759)* 
-0.000  

(-3.97)* 

0.053 
(2.152)** 

0.212 
(3.855)* 

0.060 
(1.624) 
-0.051  
(-1.71) 

0.857 
(31.952)* 

0.917 
(38.880)* 

 
(b) Individual stocks 

Security Model α φ λ1 γ θ1 

AGL DGARCH 
EGARCH 

0.006 
(2.160)** 

0.004 
(2.433)** 

0.002 
(6.999)* 
-5.958 

(-6.308)* 

0.049 
(0.751) 
0.585 

(3.560)* 

1.461 
(0.867) 
-0.357 

(-1.292) 

0.006 
(0.375) 
0.047 

(0.248) 
ASR DGARCH 

EGARCH 
-0.000 (-
0.269) 
0.000 

(0.000) 

0.005 
(1.097) 
-4.876 

(-0.900) 

-0.053 (-
1.98)** 
-0.268 (-
0.579) 

0.052 
(1.982)** 

-0.188 
(-0.608) 

0.612 
(1.126) 
0.010 

(0.008) 
BAW DGARCH 

EGARCH 
-0.000 

(-0.044) 
-0.000 

(-0.021) 

0.000 
(4.301)* 
-0.524 

(-4.013)* 

0.228 
(1.353) 
0.214 

(2.666)* 

-0.167 
(-0.841) 
0.080 

(0.703) 

0.814 
(24.476)* 

0.940 
(56.198)* 
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CTP DGARCH 
EGARCH 

0.003 
(2.532)** 

0.005 
(4.021)* 

0.000 
(1.754) 
-0.345 

(-2.26)** 

0.025 
(0.992) 
0.151 

(2.333)** 

0.068 
(1.979)** 

-0.092 
(-3.434)* 

0.923 
(23.549)* 

0.958 
(48.102)* 

HLH DGARCH 
EGARCH 

0.002 
(2.426)** 

0.003 
(2.552)** 

0.000 
(2.454)** 

-0.421 
(-2.65)** 

0.085 
(1.883) 
0.208 

(2.506)** 

0.024 
(0.725) 
-0.045 

(-1.510) 

0.894 
(29.203)* 

0.952 
(47.083)* 

HVL DGARCH 
EGARCH 

-0.000 
(-0.338) 
-0.001 

(-0.832) 

0.000 
(1.413) 
-0.011 

(-2.11)** 

-0.001  
(-0.089) 
0.211 

(3.934)* 

0.029 
(2.477)** 

-0.015 
(-0.416) 

0.979 
(88.855)* 

0.852 
(11.330)* 

MLB DGARCH 
EGARCH 

0.001 
(0.442) 
0.001 

(1.049) 

0.002 
(1.701) 
-4.692 
(-1.93) 

0.073 
(1.527) 
0.155 

(1.423) 

-0.077 
(-1.607) 
-0.120 

(-1.285) 

0.568 
(2.446)** 

0.180 
(0.384) 

NED DGARCH 
EGARCH 

0.003 
(2.758)* 

0.003 
(2.808)* 

0.000 
(3.103)* 
-0.309 

(-3.490)* 

0.013 
(0.702) 
0.108 

(2.949)* 

0.106 
(3.118)* 
-0.080 

(-3.645)* 

0.874 
(27.401)* 

0.964 
(81.731)* 

NPK DGARCH 
EGARCH 

0.003 
(2.881)* 

0.003 
(3.189)* 

0.000 
(2.740)* 
-0.333 

(-3.256)* 

0.036 
(2.102)** 

0.131 
(3.722)* 

0.032 
(1.314) 
-0.034 

(-1.575) 

0.914 
(41.473)* 

0.963 
(70.706)* 

OCE DGARCH 
EGARCH 

0.003 
(2.954)* 

0.003 
(2.807)* 

0.000 
(1.277) 
-0.353 

(-2.12)** 

0.048 
(2.408)** 

0.130 
(3.348)* 

-0.002 
(-0.038) 
-0.006 

(-0.103) 

0.928 
(24.469)* 

0.956 
(41.206)* 

PPC DGARCH 
EGARCH 

0.000 
(0.191) 
-0.000 

(-0.177) 

0.000 
(1.741) 
-0.850 

(-2.15)** 

0.029 
(1.730) 
0.084 

(2.955)* 

0.017 
(0.854) 
-0.014 

(-0.575) 

0.936 
(39.675)* 

0.981 
(87.930)* 

SAP DGARCH 
EGARCH 

0.003 
(2.084)** 

0.003 
(2.371)** 

0.000 
(1.646) 
-0.109 

(-2.578)* 

0.031 
(2.498)** 

0.073 
(3.353)* 

0.019 
(0.931) 
-0.034 

(-2.450)* 

0.947 
(63.035)* 

0.991 
(162.82)* 

TNT DGARCH 
EGARCH 

0.002 
(2.133)** 

0.002 
(2.019)** 

0.000 
(3.041)* 
-0.784 

(-3.284)* 

0.062 
(1.966)** 

0.205 
(3.729)* 

0.059 
(1.195) 
-0.057 

(-1.401) 

0.816 
(16.958)* 

0.896 
(25.618)* 

TRE DGARCH 
EGARCH 

0.004 
(1.721) 
-0.000 

(-0.662) 

0.006 
(1.721) 
-4.530 

(-4.528)* 

-0.003 
(-3.217)* 

-0.101 
(-0.757) 

-0.000 
(-1.87) 
-0.372 

(-1.96)** 

0.596 
(1.884) 
0.047 

(0.311) 
 
 

In order to investigate whether volatility was priced on the JSE, 
a conditional variance term was introduced in the mean equation, 
and the statistical significance of the associated coefficient, denoted 
β , was evaluated. Finally, a general AGARCH-M model was fitted 
to each of the series, in an attempt to capture all the effects 
simultaneously. Ward tests were then applied to investigate whether 
the leverage effect variable and the in-mean variable were jointly 
statistically significant. Under the null hypothesis that 0== βγ , 
the Ward test statistic has a 2

2χ  distribution. 
An additional comparison made across the models was to assess 

the degree of persistence implied by each model. Noting the non-
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nestedness feature of the models, we adopted the procedure of 
Glosten et al (1993), where the following first order autoregressive 
scheme: 

 
 ttt hh νρψ ++= −1 ,      (9) 
 
was fitted to the estimated volatility series from each model, and the 
magnitude and significance of the autoregressive parameter were 
assessed and compared across models. In addition, the volatility 
persistence implied by the standard GARCH model was calculated 
as a simple summation of the ARCH and GARCH terms, and 
appraised. 

Finally, we were particularly interested in establishing whether 
the successful model for each series was capable of explaining the 
observed non-linearities in the data. Therefore, we applied the 
linearity test due to Brock, Dechert and Scheinkman (1987) on the 
standardised residuals from the model. A summarised description of 
the so-called BDS test is in Mangani (2005) where an application 
using the same data set of JSE returns is illustrated. The test was, 
therefore, herein applied as therein described3. However, because the 
distribution of such standardised residuals is known to be 
inconsistent with the standard normal, the test was conducted using 
the EViews 4.0 software, rather than the LeBaron (1991) programme 
used in the prior investigation. The use of EViews 4.0 facilitated the 
bootstrapping of probability values for accepting the null hypothesis 
of linearity, which was done using 1000 iterative repetitions. If the 
model was capable of capturing all the non-linearities, the test 
should not reject the iid null hypothesis when thus applied. In this 
context, the BDS test was used as a test for correct model 
specification. 

Two points ought to be mentioned regarding the ensuing 
analysis. Firstly, it is trivial, yet of necessity, to note that a 
parameter estimate that is statistically significant at 10 percent is 
equivalently significantly positive or negative at the 5 percent level. 
As such, we evaluated two-tail statistical significance at 10 percent 
in the succeeding analysis, to achieve the aforesaid 5 percent one-tail 
equivalence. Secondly, since no strict structural model was assumed 
for the mean equation, there was no motivation for a statistical 
evaluation of this equation, except in terms of the worth of the in-
mean variable.  

                                            
3 In particular, the choice of values for embedding dimension and closeness 
gauge made in Chapter 3 were maintained in this chapter, i.e., 5,4,3,2=m  
and σ5.0=l ,1.0σ ,1.5σ , where σ  was the standard deviation of the 
data. 
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In the ensuing discussions, the estimation results for the two 
portfolios are contextually presented in this paper but, for want of 
space, only summaries are provided for the individual stocks. 
Interested readers may consult the author for the complete 
estimation results. 
 
4. Main Results and Discussions 
 
4.1 GARCH Model Estimation 
 
For the results of estimating the GARCH(1,1) model, Table 3 refers. 
The results indicated that the standard GARCH process was a 
successful univariate model of volatility on the JSE. Firstly, the 
coefficient for the GARCH term, 1θ , was significantly positive in all 
but two cases (ASR and MLB), and remained positive but 
insignificant for those two stocks. In most cases, the level of 
significance was exceedingly high, implying strong evidence that 
volatility in the previous week sturdily explained current volatility. 
The estimated values for the coefficient were also quite high 
(generally close to, but less than unity). This had an implication for 
the structure of volatility persistence. We revert to this issue later. 

Secondly, the ARCH term also yielded a commonly positive 
coefficient ( 1λ  > 0 in forty-three of the forty-six cases), which was 
significant in forty instances. For three stocks (ASR, MLB and TRE), 
it is interesting to note that 1λ  was actually significantly negative, 
showing an inverse relationship between shocks and volatility. 
Although the estimated values for 1λ  in these three stocks were very 
low in absolute value terms, the effects of the term might not be 
ignored, particularly considering that the concerned stocks  also  
yielded relatively low and practically insignificant estimates for 1θ . 
All in all, the empirical findings indicated that strong GARCH 
effects were apparent on the JSE, and that individual stock 
dynamics could be approximated well by the dynamics for the 
market aggregates. 
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Table 3 - GARCH model estimation results 
This table summarises the estimation results for the standard GARCH(1,1) model. 
The conditional mean and volatility equations are given by (1) and (4) above, 
respectively. In part (a), robust z-statistics are in parentheses, while *, ** and *** 
denote statistical significance at 1%, 5% and 10%, respectively In part (b), C in the 
first column is the estimated coefficient in the model, and could take any of the 
values indicated in the third column. For each such value, the stocks and numbers of 
stocks in the sample whose estimated value for C corresponded with that indicated in 
the third column are given in columns four and five, respectively. 
 
a) Stock Portfolios 

Portfolio α φ λ1 θ1 Log L 

ALSI 

0.000 

(0.469) 0.000 (1.76) 

0.124 

(2.843)* 

0.795 

(11.26)* 2093.8 

PORT 

0.000 

(0.860) 

0.000 

(3.388)* 

0.090 

(3.879)* 

0.856 

(29.37)* 3774.0 

 
b) Individual Stocks 

C Row Value of C Securities No. 
#1 Positive All stocks but those in Row #3 37 
#2 Significantly 

positive 
AFX, ANG, CTP, GMF, HLH, JCM, NED, 
NPK, OCE, PIK, SAB, SAP, TNT 

13 

#3 Negative ALT, BAW, DUR, HAR, HVL MLB, REM,  7 
#4 Significantly 

negative 
None 0 

 
 
α 
 

#5 Not significant All but those in Row #2 31 
#6 Positive All stocks 44 
#7 Significantly 

positive 
ANG, BAW, BVT, DUR, ECO, ELH, HAR, 
HLH, HVL, IMP, MAF, NED, NPK, PAM, 
PPC, REM, SBK, TBS, TNT, VNF, WAR 

21 

#8 Negative None 0 
#9 Significantly 

negative 
None 0 

 
 
 
φ 

#10 Not significant All stocks but those in Row #7 23 
#11 Positive All stocks but those in Row #13 41 
#12 Significantly 

positive 
All stocks but those in Row #13 and Row 
#15 

35 

#13 Negative ASR, MLB, TRE 3 
#14 Significantly 

negative 
ASR, MLB, TRE 3 

 
 
λ1 

#15 Not significant AFE, ALT, JCM, MAF, REM, VNF 6 
#16 Positive All stocks 44 
#17 Significantly 

positive 
All stocks but those in Row #20 42 

#18 Negative None 0 
#19 Significantly 

negative 
None 0 

 
 
θ1 

#20 Not significant ASR, MLB 2 
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4.2 Dummy GARCH Model Estimation 
 
In Table 4, a summary of the results of estimating the DGARCH 
model is presented. It was noted that the asymmetric effect term was 
positive for both portfolios and twenty-eight of the individual stocks, 
but significantly so for only nine stocks. For the said nine stocks, 
therefore, a negative shock apparently tended to increase volatility 
by more than a positive shock of similar magnitude (i.e., there were 
seemingly significant leverage effects). Although the remaining 
stocks showed that a negative shock could reduce volatility by more 
than a positive shock of equal magnitude (γ  < 0), the parameter was 
only significant for two of the sixteen stocks involved. Therefore, the 
prima facie evidence was that asymmetric effects could be observed 
in one-quarter of the stocks under investigation, but not in any of the 
aggregates, and that most of these observed asymmetries were 
consistent with the supposition of a leverage effect. This observation 
notwithstanding, it was further noted that the ARCH term 
parameter became statistically insignificant in virtually all stocks 
that showed evidence of significant asymmetric effects. This could 
imply that the ARCH term and the asymmetric effect term were 
highly collinear, and hence that the significance of the asymmetric 
effect parameter was spurious. Collinearity also potentially spanned 
other stocks and ALSI, such that only twenty stocks and PORT had 
significant ARCH term coefficients in the DGARCH model, compared 
with thirty-eight stocks and both aggregates in the GARCH model. 
This led us to suspect that the asymmetric effect term was 
‘detrimental’ to the estimation of the model, and to conclude that 
genuine asymmetric effects were not discernible on the market. 

Except for the above observations, the results of fitting the 
DGARCH model were quite comparable with those of the standard 
GARCH specification. Specifically, the first order GARCH term was 
not affected by the inclusion of the asymmetric effect term. Since the 
‘detrimental’ variable was clearly collinear with only one other 
variable, namely the ARCH term, its omission was deemed 
appropriate in improving parameter estimation, in the spirit of 
Frisch’s confluence analysis (Koutsoyiannis, 1988). 

 
4.3 GARCH-in-Mean Model Estimation 
 
The results of estimating the GARCH-M model are presented in 
Table 5. As alluded to in subsection 4.1, convergence could not be 
achieved in the estimation of the parameters of the model for six 
stocks, namely AGL, ASR, AVI, BAW, DEL, and MLB, such that the  
analysis  was  based  on  the remaining forty assets. It will be noted 
from the table that the volatility coefficient in the mean equation 
was negative for PORT and twenty-seven of the stocks, but only 
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significantly so for PORT and JNC. Further, only DUR and HAR 
among the individual stocks showed that volatility was positively 
priced in their return dynamics. For these, an increase in volatility 
was, on average, associated with higher expected returns. Since the 
general requirement for a priced factor is that it should be common 
across the stocks in the market, volatility could be perceived as 
representing idiosyncratic risk for the few assets where it was 
priced. This could suggest that volatility did not meet the criterion of 
a priced factor, and that we could look for JSE priced factors 
elsewhere. The behaviour of PORT in this model rendered suspicious 
the use of aggregates in determining the empirical nature of the 
risk-return relationship for stocks: the highly statistically significant 
return-dampening effect of volatility observed in PORT did not seem 
to be characteristic of individual stock dynamics, nor of the market 
index. 
 
Table 4 - DGARCH model estimation results 
This table provides a summary of the estimation results for the DGARCH model. The 
specific conditional mean and volatility equations are given by (1) and (7), 
respectively. Entries are as defined in Table 3.  
 

(a) Stock portfolios 
Portfolio α φ λ1 γ θ1 

ALSI 
0.000 

(0.320) 
0.000 

(1.806) 
0.102 

(1.567) 
0.041 

(0.544) 
0.786 

(10.363)* 

PORT 
0.000 

(0.411) 
0.000 

(3.759)* 
0.053 

(2.152)** 
0.060 

(1.624) 
0.857 

(31.952)* 
 

(b) Individual Stocks 
C Row Value of C Stocks No. 

#1 Positive All stocks but those in Row #3 34 
#2 Significantly 

positive 
AFX, AGL, CTP, DEL, GMF, HLH, JCM, 
JNC, LGL, MAF, NED, NPK, OCE, PIK, 
SAB, SAP, TNT, TRE 

18 

#3 Negative ALT, ASR, BAW, BVT, CHE, CRH, DUR, 
HAR, HVL, REM 

10 

#4 Significantly 
negative 

None 0 

 
 
α 

#5 Not 
significant 

All stocks in Row #3 as well as AFE, ANG, 
AVI, ECO, ELH, FOS, IMP, MLB, PAM, PPC, 
RLO, SBK, TBS, VNF, WLO 

25 

#6 Positive All stocks 44 
#7 Significantly 

positive 
AGL, ANG, BAW, BVT, CHE, CTP, DUR, 
ECO, ELH, HAR, HLH, IMP, MAF, MLB, 
NED, NPK, PAM, PPC, REM, SAP, SBK, 
TBS, TNT, TRE, WAR, WLO 

21 

#8 Negative None 0 
#9 Significantly 

negative 
None 0 

 
 
φ 

#10 Not 
significant 

All stocks but those in Row #7 23 
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#11 Positive All stocks but those in Row #13 41 
#12 Significantly 

positive 
AFX, ANG, AVI, DEL, DUR, HAR, HLH, 
NPK, OCE, PAM, PPC, SAB, SAP, SBK, 
TNT, VNF, WAR, WLO 

18 

#13 Negative ASR, CHE, HVL, TRE 4 
#14 Significantly 

negative 
ASR, TRE 2 

 
 
λ
1 

#15 Not 
significant 

All stocks but those in Row #12 and Row #14 24 

#16 Positive All stocks but those in Row #18 28 
#17 Significantly 

positive 
ASR, BVT, CHE, CTP, ELH, HVL, LGL, 
NED, TBS,  

9 

#18 Negative AFE, ALT, BAW, DEL, DUR, GMF, JCM, 
JNC, MAF, MLB, OCE, REM, SBK, TRE, 
VNF, WLO 

16 

#19 Significantly 
negative 

TRE, VNF 2 

 
 
γ 

#20 Not 
significant 

All stocks but those in Row #17 and Row #19 33 

#21 Positive All stocks 44 
#22 Significantly 

positive 
All stocks but those in Row #25 41 

#23 Negative None 0 
#24 Significantly 

negative 
None 0 

 
 
θ1 

#25 Not 
significant 

AGL, ASR, REM,  3 

 
 

Except for the apparent lack of success of the GARCH-M model 
documented above, the model retained the desirable attributes of the 
standard GARCH process: generally significant ARCH and GARCH 
coefficients in the volatility equation. This contrasted sharply with 
the results obtained from the DGARCH process already discussed, 
and pointed to the possibility of reformulating the mean equation 
such as to provide a pricing relationship for stocks. One way by 
which this could be done is to introduce priced factors, which could 
be macroeconomic-based or otherwise, as extra regressors.  
 
4.4 Dummy GARCH-in-Mean Model Estimation 
 
Fitting the most general DGARCH-M process to the individual stock 
return series yielded the results reported in Table 6. As was the case 
with the GARCH-M model, convergence could not be achieved in the 
estimation of the parameters of the model for  seven stocks. 
Therefore, the results of this analysis were based on the remaining 
thirty-nine assets. These results, summarized in Table 6, showed 
that the more general DGARCH-M model retained the combined 
weaknesses of both the DGARCH and GARCH-M models. 
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Table 5 – GARCH-M model estimation results 
This table provides a summary of the estimation results for the GARCH-M model. 
For uncorrelated returns, the specific conditional mean and volatility equations are 
given by (8) and (4), respectively. For correlated returns, the mean equation included 
AR terms. Because of parameter non-convergence, six stocks (i.e., AGL, ASR, AVI, 
BAW, DEL, and MLB) were excluded from the analysis. Entries are as defined in 
Table 3.  
 
(a) Stock portfolios 

Portfolio α β φ λ1 θ1 

ALSI 
0.003 

(1.949)*** 
0.064 

(0.029) 
0.000 

(1.806)*** 
0.152 

(2.734)* 
0.765 

(9.376)* 

PORT 
0.005 

(3.870)* 
-5.400 (-
1.706)*** 

0.000 
(3.631)* 

0.117 
(3.881)* 

0.806 
(21.781)* 

 
(b) Individual stocks 

C Ro
w 

Value of C Stocks No. 

#1 Positive All stocks but those in Row #3 31 
#2 Significantl

y positive 
AFX, HLH, ELH, JCM, JNC, LGL, MAF, REM, 
SAB, SBK, TBS, TNT, VNF 

13 

#3 Negative ANG, CRH, DUR, GMF, PAM, SAP, WAR 7 
#4 Significantl

y negative 
DUR 1 

 
 
α 

#5 Not 
significant 

All stocks but those in Row #2 and in Row # 4 24 

#6 Positive ALT, ANG, BVT, CRH, CTP, DUR, GMF, HAR, 
HVL, PAM, PIK, SAP, WAR 

13 

#7 Significantl
y positive 

DUR, HAR 2 

#8 Negative All stocks but those in Row #6 25 
#9 Significantl

y negative 
JNC 1 

 
 
β 

#10 Not 
significant 

All stocks but those in Row #7 and Row #9 35 

#11 Positive All stocks 38 
#12 Significantl

y positive 
All stocks but those in Row #15 24 

#13 Negative None 0 
#14 Significantl

y negative 
None 0 

 
 
φ 

#15 Not 
significant 

AFX, CRH, CTP, GMF, IMP, JNC, LGL, OCE, 
PIK, RLO, SAB, SAP, TRE, VNF 

14 

#16 Positive All stocks but that in Row #18 37 
#17 Significantl

y positive 
All stocks but those in Row #18 and Row #20 33 

#18 Negative TRE 1 
#19 Significantl

y negative 
TRE 1 

 
 
λ1 

#20 Not 
significant 

GMF, MAF, REM, VNF, 4 

 #21 Positive All stocks 38 
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#22 Significantl
y positive 

All stocks 38 

#23 Negative None 0 
#24 Significantl

y negative 
None 0 

 
θ1 

#25 Not 
significant 

None 0 

 
 
Table 6 – DGARCH-M model estimation results: summary of 

findings 
 
This table provides a summary of the estimation results for the DGARCH-M model. 
For uncorrelated stock returns, the specific conditional mean and volatility equations 
are given by (8) and (7). For correlated returns, the mean equation included AR 
terms. Because of parameter non-convergence, seven stocks (i.e., AGL, ASR, AVI, 
BAW, DEL, DUR and MLB) were excluded from the analysis.  Entries are as defined 
in Table 3. 
 
(a) Stock portfolios 
Portf
olio 

α 
β φ λ1 

γ 
θ1 

ALSI 
0.003 

(1.997)** 
-0.211 (-
0.097) 

0.000 
(1.890)*** 

0.130 
(1.615) 

0.044 
(0.545) 

0.755 
(8.798)* 

PORT 
0.005 

(3.732)* 
-5.949 (-
1.9)*** 

0.000 
(3.960)* 

0.082 
(2.558)** 

0.075 
(1.745)*** 

0.792 
(21.927)* 

 
(b) Individual stocks 
C Row Value of C Stocks No. 

 #1 Positive All stocks but those in Row #3 26 
#2 Significantly positive AFX, CTP, JCM, ELH, JCM, JNC, LGL, 

NED, OCE, REM, SAB, SBK, TNT, 
TRE, VNF 

15 

#3 Negative ALT, ANG, CHE, CRH, GMF, HAR, 
HVL, PAM, PIK, SAP, WAR 

11 

#4 Significantly negative HAR, REM, WAR 3 

 
 
α 

#5 Not significant All stocks but those in Row #2 and in 
Row # 4 

19 

 #6 Positive ALT, ANG, BVT, CHE, CRH, ECO, 
GMF, HAR, HVL, JCM, PAM, PIK, 
SAP, TBS, WAR 

15 

#7 Significantly positive HAR, WAR 2 
#8 Negative All stocks but those in Row #6 22 
#9 Significantly negative None 0 

 
 
β 

#10 Not significant All stocks but those in Row #7 35 
 #11 Positive All stocks 37 

#12 Significantly positive All stocks but those in Row #15 22 
#13 Negative None 0 
#14 Significantly negative None 0 

 
 
φ 

#15 Not significant AFX, CRH, FOS, GMF, IMP, JNC, 
MAF,  LGL, PIK, RLO, SAP, VNF 

12 
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#16 Positive All stocks but that in Row #18 36 
#17 Significantly positive ANG, CTP, HAR, HLH, HVL, NKP, 

OCE, PAM, PPC, SAB, SAP, SBK, TNT, 
VNF, WAR, WLO 

16 

#18 Negative CHE 1 
#19 Significantly negative None 0 

 
 
λ1 

#20 Not significant All stocks but those in Row #17 21 
 #21 Positive All stocks but those in Row #23 27 

#22 Significantly positive BVT, CHE, CTP, ELH, HLH, NED, 
NPK, PAM, PPC, TBS, TNT 

11 

#23 Negative AFE, JCM, JNC, MAF, 0CE, REM, 
SBK, TRE, VNF, WLO 

10 

#24 Significantly negative None 0 

 
 
γ 

#25 Not significant All stocks but those in Row #22 26 
 #26 Positive All stocks 37 

#27 Significantly positive All stocks but that in Row #30 36 
#28 Negative None 0 
#29 Significantly negative None 0 

 
 
θ1 

#30 Not significant REM 1 
 
 

Specifically, volatility was only prices in PORT, DUR, HAR and 
WAR, while only PORT and eleven stocks showed evidence of 
symmetric effects. The significant leverage effect parameters were 
positive, which was consistent with prior belief. Finally, the 
consequences of potential collinearity observed in the DGARCH 
model were also present. 

As a further diagnostic checking of the DGARCH-M model, we 
conducted Ward tests for the joint significance of β and γ in the 
model. The null hypothesis was that β = γ = 0, and the resultant 2

2χ -
distributed test statistics are presented in Table 7. 
 
 
Table 7 – Ward tests for the DGARCH-M model 
This table shows the 2

2χ -distributed Ward test statistics (W) for the null hypothesis 
of β = γ = 0 in the DGARCH-M model.  Figures in parentheses are the probabilities of 
accepting the null. NC indicates non-convergence in parameter estimation. * and ** 
imply that the null could be rejected at 1% and 5% significance levels, respectively. 
 
(a) Stock portfolios 

Portfolio W Security W 
ALSI 0.309 (0.857) PORT 7.286 (0.026)** 

 
(b) Individual stocks 

Security W Security W 
AFE 1.168 (0.558) JCM 3.443 (0.179) 
AFX 1.118 (0.572) JNC 8.828 (0.012)** 
AGL NC LGL 3.334 (0.189) 
ALT 1.937 (0.380) MAF 1.749 (0.417) 
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ANG 2.221 (0.329) MLB NC 
ASR NC NED 10.139 (0.006)* 
AVI NC NPK 1.844 (0.398) 

BAW NC OCE 2.031 (0.362) 
BVT 4.284 (0.117) PAM 3.722 (0.156) 
CHE 4.648 (0.098) PIK 0.572 (0.751) 
CRH 1.177 (0.555) PPC 0.794 (0.672) 
CTP 4.264 (0.119) REM 0.774 (0.679) 
DEL NC RLO 0.125 (0.940) 
DUR NC SAB 0.824 (0.662) 
ECO 3.255 (0.196) SAP 3.100 (0.212) 
ELH 5.929 (0.052) SBK 0.548 (0.760) 
FOS 4.744 (0.093) TBS 5.415 (0.067) 
GMF 1.005 (0.605) TNT 3.215 (0.200) 
HAR 4.861 (0.088) TRE 10.222 (0.006)* 
HLH 1.079 (0.583) VNF 4.486 (0.106) 
HVL 0.886 (0.642) WAR 2.236 (0.327) 
IMP 1.602 (0.449) WLO 0.883 (0.643) 

 
 

The Wald test results showed that, at a significance level of 5 
percent, the null hypothesis could only be rejected for PORT, JNC, 
NED and TRE, in keeping with the observation that at least one of 
the two coefficients was significant for these series. This 
notwithstanding, and despite being the most log likelihood-preferred 
of the four models, there was no adequate motivation to choose the 
general DGARCH-M model as a description of univariate JSE equity 
returns. The stipulated evidence of collinearity and the fact that 
volatility was not commonly priced among the stocks rendered the 
model less useful. 
 
4.5 Volatility Persistence 
 
The estimated autoregressive parameters derived using (9), and 
their corresponding t-statistics4 are shown in Table 8. In addition, 
the table shows the persistence measure given by the standard 
GARCH model, being the simple summation of the estimated ARCH 
and GARCH coefficients. In general, it was clearly evident that all 
the models exhibited very high volatility persistence. The estimated 
volatility measure implied by the standard GARCH model 
coefficients averaged 0.933 for the portfolios, and very closely 
approximated that of 0.935 for the individual stocks. The averages of 
the estimated autoregressive parameters for individual stocks 
ranged from a minimum of 0.869 in the DGARCH process to a 
maximum of 0.897 in the GARCH-M process. Therefore, by the 
autoregression gauge, the standard GARCH model exhibited a 
                                            
4 Note that the standard error of the autoregressive parameter is 
necessarily equal to one over the square root of the sample size. 
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persistence pattern in the region of the median of the persistence 
implied by all the models. A near-IGARCH process was generally 
suggested. Once again, the dynamics of individual stocks were quite 
well approximated by those of the aggregates. 

Aside from the general conclusion that a near-IGARCH process 
seemed to describe the JSE, and notwithstanding few other cases in 
which the estimated autoregressive parameters were relatively low, 
it is noteworthy that the DGARCH model for AGL displayed ‘outlier’ 
behaviour, yielding a very low and statistically insignificant value. 
This was not particularly surprising, considering that the security 
showed the unique characteristic that even the GARCH term, let 
alone the ARCH term, yielded an insignificant parameter. The 
calculation of the mean autoregressive parameter estimate for 
individual stocks in the DGARCH formulation excluded this value. 

The preceding analysis indicated that the standard GARCH 
model was the preferred description for the dynamics of JSE returns. 
Based on this empirical evidence, we proceeded to assess the model’s 
ability to account for the non-linear structures established in 
Mangani (2005). The results of this investigation follow. 

 
Table 8 – Volatility persistence in ARCH-type models 
In this table, ρ was estimated using (9). Figures in parentheses are t-statistics. NC 
denotes parameter non-convergence in model estimation. * indicates that the 
parameter was not significantly different from zero at all conventional levels. 
 

(a) Market aggregates 
ρ 

Portfolio 

λ1 + 
θ1 GARCH DGARCH GARCH-M DGARCH-M 

ALSI 0.919 0.888 (27.327) 0.879 (27.050) 0.870 (26.773) 0.861 (26.496) 
PORT 0.946 0.935 (36.393) 0.931 (36.237) 0.904 (35.186) 0.884 (34.408) 
Mean 0.933 0.912  0.905  0.887  0.873  

 

(b) Individual stocks 
ρ 

Security 
λ1 + 
θ1 GARCH DGARCH GARCH-M DGARCH-M 

AFE 0.939 0.903 (35.171) 0.903 (35.171) 0.859 (33.457) 0.857 (33.379) 
AFX 0.931 0.911 (35.506) 0.918 (35.778) 0.934 (36.402) 0.949 (36.987) 
AGL 1.009 0.996 (38.818) 0.006 (0.234)* NC - NC - 
ALT 0.993 0.991 (38.585) 0.990 (38.546) 0.991 (38.585) 0.684 (26.632) 
ANG 0.927 0.919 (35.817) 0.910 (35.467) 0.925 (36.051) 0.916 (35.701) 
ASR 0.606 0.606 (23.618) 0.608 (23.696) NC - NC - 
AVI 0.988 0.944 (36.731) 0.947 (36.848) NC - 0.949 (36.926) 

BAW 0.954 0.831 (32.324) 0.855 (33.257) NC - NC - 
BVT 0.873 0.838 (32.650) 0.813 (31.676) 0.829 (32.299) 0.805 (31.364) 
CHE 0.881 0.902 (35.097) 0.952 (37.042) 0.932 (36.264) 0.968 (37.665) 
CRH 0.942 0.857 (33.390) 0.945 (36.819) 0.945 (36.819) 0.943 (36.741) 
CTP 0.985 0.964 (37.571) 0.952 (37.104) 0.972 (37.883) 0.959 (37.376) 
DEL 1.012 0.924 (36.012) 0.936 (36.480) NC - NC - 
DUR 0.553 0.485 (18.896) 0.438 (17.065) 0.505 (19.676) NC - 
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ECO 0.957 0.964 (37.398) 0.960 (37.243) 0.963 (37.359) 0.959 (37.204) 
ELH 0.964 0.970 (37.718) 0.968 (37.640) 0.976 (37.951) 0.969 (37.679) 
FOS 0.861 0.860 (33.485) 0.886 (34.497) 0.854 (33.251) 0.876 (34.108) 
GMF 0.984 0.983 (38.312) 0.984 (38.351) 0.988 (38.507) 0.988 (38.507) 
HAR 0.964 0.951 (37.040) 0.956 (37.235) 0.954 (37.157) 0.960 (37.391) 
HLH 0.992 0.922 (35.934) 0.916 (35.701) 0.913 (35.584) 0.905 (35.272) 
HVL 0.943 0.942 (36.653) 0.988 (38.443) 0.864 (33.618) 0.874 (34.007) 
IMP 0.946 0.948 (36.923) 0.952 (37.079) 0.953 (37.118) 0.962 (37.469) 
JCM 1.692 0.692 (26.872) 0.696 (27.028) 0.746 (28.969) 0.895 (34.756) 
JNC 1.137 0.869 (33.227) 0.883 (33.762) 0.886 (33.877) 0.877 (33.533) 
LGL 0.989 0.984 (38.351) 0.980 (38.195) 0.986 (38.429) 0.982 (38.273) 
MAF 1.037 0.810 (31.496) 0.888 (34.529) 0.841 (32.702) 0.916 (35.618) 
MLB 0.495 0.501 (19.526) 0.566 (22.059) NC - NC - 
NED 0.942 0.948 (36.948) 0.940 (36.636) 0.952 (37.104) 0.950 (37.026) 
NPK 0.979 0.986 (38.429) 0.977 (38.078) 0.963 (37.532) 0.976 (38.039) 
OCE 0.977 0.960 (37.415) 0.958 (37.337) 0.968 (37.727) 0.968 (37.727) 
PAM 0.819 0.792 (30.868) 0.825 (32.154) 0.798 (31.102) 0.827 (32.232) 
PIK 0.942 0.939 (36.597) 0.911 (35.506) 0.975 (38.000) 0.969 (37.766) 
PPC 0.972 0.969 (37.691) 0.973 (37.847) 0.969 (37.691) 0.973 (37.847) 
REM 0.800 0.709 (27.606) 0.428 (16.665) 0.723 (28.151) 0.392 (15.263) 
RLO 0.893 0.863 (33.579) 0.869 (33.813) 0.841 (32.723) 0.842 (32.762) 
SAB 0.984 0.962 (37.493) 0.963 (37.532) 0.969 (37.766) 0.969 (37.766) 
SAP 0.987 0.980 (38.195) 0.979 (38.156) 0.982 (38.273) 0.981 (38.234) 
SBK 0.904 0.930 (36.043) 0.931 (36.082) 0.940 (36.430) 0.939 (36.392) 
TBS 0.954 0.939 (36.476) 0.904 (35.117) 0.939 (36.476) 0.900 (34.961) 
TNT 0.915 0.908 (35.389) 0.896 (34.921) 0.872 (33.986) 0.860 (33.518) 
TRE 0.591 0.591 (23.034) 0.592 (23.073) 0.920 (35.856) 0.757 (29.504) 
VNF 0.988 0.985 (38.377) 0.986 (38.416) 0.988 (38.494) 0.984 (38.338) 
WAR 0.976 0.939 (36.585) 0.937 (36.507) 0.977 (38.065) 0.970 (37.793) 
WLO 0.975 0.979 (38.143) 0.488 (19.013) 0.472 (18.390) 0.473 (18.429) 
Mean 0.935 0.883  0.8695  0.897  0.891  

 
4.6 Linearity in the GARCH Model 
 
Table 9 presents a summary of the BDS test statistics from the 
standardised residuals of the GARCH(1,1) model. Compared with 
the results for the linearly filtered return series reported in Mangani 
(2005), there was strong evidence that the GARCH model filtered 
most of the non-linearities in the return series. Specifically, no 
remaining non-linear structures could be observed in both portfolios 
and in seven individual stocks, and the magnitudes of the BDS 
statistics were drastically reduced in virtually all the cases. 
Moreover, of the forty-four stocks, at least one BDS statistic was 
insignificant in thirty-one. The results were quite similar to those 
obtained by Dockner et al (1997), who concluded that the DGARCH 
process accounted for most non-linearities on the Vienna Stock 
Exchange. The GARCH(1,1) model, therefore, showed promise in 
accounting for non-linearities on the JSE. 
 

                                            
5 Note that the calculation of this mean excluded the estimated ρ from the 
‘outlier’ case, AGL. When this was included, the mean declined to 0.849 
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Table 9 – BDS tests for standardised GARCH(1,1) residuals: 
summary of findings for individual stocks 

This tables summarises the BDS test results, presented in Appendix 4B, for 
the standardised GARCH(1,1) residuals. Results are for individual stocks. 
The stocks and numbers of stocks with significant BDS test statistics equal 
to the number in Column 1 are presented in Column 2 and Column 3, 
respectively. Column 4 and Column 5 give cumulative figures. 
 

1 
# of Sig. 

Stat. 

2 
Stocks 

3 
# of 

Stocks 

4 
# of Sig. 

Stat. 

5 
# of 

Stocks 
0 ANG, ASR, BAW, NED, 

SBK, TBS, WAR 
7 0 7 

1 - 0 ≤ 1 7 
2 IMP, MAF 2 ≤ 2 9 
3 CHE, CRH, JNC 3 ≤ 3 12 
4 AFX, HLH 2 ≤ 4 14 
5 DUR, REM 2 ≤ 5 16 
6 AFE, HAR, PIK 3 ≤ 6 19 
7 - 0 ≤ 7 19 
8 BVT, PAM, TNT 3 ≤ 8 22 
9 DEL, ECO, JCM, OCE, PPC 5 ≤ 9 27 
10 GMF, RLO 2 ≤ 10 29 
11 CTP, FOS 2 ≤ 11 31 
12 AGL, ALT, AVI, ELH, HVL, 

LGL, MLB, NPK, SAB, SAP, 
TRE, VNF, WLO 

13 ≤ 12 44 

 
The foregoing observation notwithstanding, it could still be 

noted from these results that some non-linear structures were 
existent in the standardised residuals from the GARCH model for 
the individual stocks. Therefore, the model with a time-varying 
conditional variance could account for most, but apparently not all, 
of the non-linearities. The remaining non-linear structures could 
indicate the presence of noise, low-order deterministic chaos, or 
additional linear dependencies not fully filtered through 
autoregression. Such linear dependencies could, for instance, be 
those associated with asset pricing anomalies, such as calendar, firm 
balance sheet and macroeconomic effects. 
  
4.1 Summary and Conclusion 
 
This paper investigated the usefulness of ARCH-type models in 
describing the return dynamics on the JSE. The investigation was 
premised on the validated evidence of volatility clustering prevalent 
on the market, as established in Mangani (2005). A specific-to-
general modelling procedure was adopted in which the standard 
GARCH model was initially fitted to the return series, and 
eventually augmented in an attempt to capture the salient issues of 
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interest. The GARCH(1,1) formulation was preferred relative to 
higher order GARCH specifications for all forty-six securities, of 
which two were stock portfolios and the rest were individual stocks. 
In order to investigate the presence of asymmetric effects of shocks 
on volatility, the dummy GARCH (DGARCH) model was preferred to 
the exponential GARCH (EGARCH) model on the basis of a 
statistical evaluation. Further, the GARCH-in-mean (GARCH-M) 
process was tested to investigate if volatility was priced on the 
market. Finally, to capture all the salient issues within one 
modelling framework, the more general dummy GARCH-in-mean 
(DGARCH-M) specification was invoked. The models were evaluated 
on the basis of statistical diagnostics. Several key conclusions can be 
drawn from the analysis, as follows. 

Firstly, the inclusion of the asymmetric effects term was 
detrimental to the estimation of the standard GARCH model, to the 
extent that the term was highly collinear with the ARCH term. 
Thus, the parameters of the DGARCH model were imprecisely 
estimated, and there was no compelling evidence for leverage or even 
asymmetric effects of shocks on volatility. 

Secondly, there was no evidence that volatility was a commonly 
priced factor on the market. Thus, although volatility was prevalent, 
JSE investors sought a premium for taking on other forms of 
perceived risk than volatility. Macroeconomic activities could provide 
effective surrogates for such priced factors. These two points imply 
that augmentations of the standard GARCH process did not improve 
the model’s ability to explain the dynamics of the market. The 
standard model provided the best fit among the models, and showed 
potential as a framework for investigating further the stock return 
dynamics. 

Finally, although the standard GARCH model performed 
relatively better than more complex formulations, it could only 
partially account for the evident non-linearities. Specifically, 
although the standardised residuals from the model showed that it 
was capable of accounting for a significant part of the non-linearities, 
it was evident that non-iid structures still remained in the series. 
This could imply that the remaining non-linear structures were 
deterministic (chaotic) rather than stochastic, or that additional 
linear dependencies existed in the data. Such dependencies could, for 
instance, be of the type associated with calendar effects, 
seasonalities or structural breaks, and could be a manifestation of 
the impact of broader macroeconomic activities. 

Subsequent research could be motivated by the observation that 
volatility was not priced on the JSE, and that the standard GARCH 
model could not fully account for the non-linear structures. Such 
work could build on the current conclusion and investigate the 
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relevance of macroeconomic activities in explaining the non-linear 
JSE stock return dynamics. 
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Appendix 1 – Stocks in the study sample  

This appendix shows the 44 stocks selected to constitute the final sample. UMC is the 
market capitalisation, before the application of the investibility weighting, while the 
WMC is the market capitalisation, after this application. UMC and WMC are in 
million rands. 
 

# 
JSE 
Code Company Name UMC 

(Rm) 
WMC 
(Rm) 

% of 
All 

Share 
Index 

1 AFE AECI Ltd 2346 2346 0.16 
2 AFX African Oxygen Ltd 4558 2279 0.15 
3 AGL Anglo American Plc 273677 273677 18.11 
4 ALT Allied Technologies Ltd 2383 1191 0.08 
5 ANG Anglogold Ltd 74176 37088 2.45 
6 ASR Assore Ltd 1820 0 0 
7 AVI Anglovaal Industries Ltd 4581 4581 0.3 
8 BAW Barloworld Ltd 14680 14680 0.97 
9 BVT The Bidvest Group Ltd 15415 15415 1.02 

10 CHE Chemical Services Ltd 1427 571 0.04 
11 CRH Coronation Holdings Ltd 1658 829 0.05 
12 CTP CTP Holdings Ltd 1930 579 0.04 
13 DEL Delta Electrical Industries Ltd 2409 2409 0.16 
14 DUR Durban Roodepoort Deep Ltd 9724 9724 0.64 
15 ECO Edgers Consolidated Stores Ltd 2039 2039 0.13 
16 ELH Ellerine Holdings Ltd 1255 1255 0.08 
17 FOS Foschini Ltd 2073 1555 0.1 
18 GMF Gencor Ltd 16802 0  
19 HAR Harmony Gold Mining Co Ltd 28572 28572 1.89 

20 HLH Hunt Leuchars & Hepburn 
Holdings Ltd 1824 0 0 

21 HVL Highveld Steel Steel & Vanadium 
Corp. Ltd 1612 484 0.03 

22 IMP Impala Platinum Holdings Ltd 38649 28986 1.92 
23 JCM Johncom Communications Ltd 1354 0 0 
24 JNC Johnnic Holdings Ltd 7309 7309 0.48 
25 LGL Liberty Group Ltd 16526 8263 0.55 

26 MAF Mutual & Federal Insurance Co 
Ltd 4432 0 0 

27 MLB Malbak Ltd 2333 1166 0.08 
28 NED Nedcor Ltd 32370 16185 1.07 
29 NPK Nampak Ltd 7405 7405 0.49 
30 OCE Oceana Group Ltd 1536 614 0.04 
31 PAM Palabora Mining Company Ltd 1699 680 0.04 
32 PIK Pik n Pay Stores Ltd 6736 3368 0.22 
33 PPC Pretoria Portland Cement Co Ltd 3918 1567 0.1 
34 REM Remgro Ltd 34541 34541 2.29 
35 RLO Reunert Ltd 3999 3999 0.26 
36 SAB South African Breweries plc 71864 71864 4.76 
37 SAP Sappi Ltd 34068 34068 2.25 
38 SBK Standard Bank Group Ltd 47001 47001 3.11 
39 TBS Tiger Brands Ltd 12058 12058 0.8 
40 TNT The Tongaat-Hulett Group Ltd 4789 2394 0.16 
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41 TRE Trencor Ltd 1383 0 0 
42 VNF VenFin Ltd 8708 8708 0.58 

43 
WAR Western Areas Ltd 4315 3236.2

5 0.21 
44 WLO Wooltru Ltd 1792 1792 0.12 

  Sample 81374
6 694478 45.93 

(Source: Adapted from Profile Media, 2002). 
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